@@ -429,6 +429,61 @@ TODO: ADD REFERENCES
429429"""
430430MultitargetRidgeRegressor
431431
432+ """
433+ $(MMI. doc_header (PCA))
434+
435+ `PCA`
436+
437+ # Training data
438+
439+ In MLJ or MLJBase, bind an instance `model` to data with
440+ mach = machine(model, X)
441+
442+ Where
443+
444+ - `X`: is any table of input features (eg, a `DataFrame`) whose columns
445+ are of scitype `Continuous`; check the scitype with `schema(X)`
446+
447+ # Hyper-parameters
448+
449+ # XXX: Would it be more consistent to use nothing or something as default?
450+ - `maxoutdim=0`: The maximum number of output dimensions. If not set, defaults to
451+ 0, where all components are kept (e.g., the number of components/output dimensions
452+ is equal to the size of the smallest dimension of the training matrix)
453+ - `method=:auto`: The method to use to solve the problem. Choices are
454+ - `:svd`: Support Vector Decomposition of the matrix.
455+ - `:cov`: Covariance matrix decomposition.
456+ - `:auto`: Use `:cov` if the matrices first dimension is smaller than its second dimension
457+ otherwise use `:svd`
458+ - `pratio::Float64=0.99`: The ratio of variance preserved after the transformation
459+ - `mean=nothing`: if set to nothing(default) centering will be computed and applied,
460+ if set to `0` no centering(assumed pre-centered), if a vector is passed,
461+ the centering is done with that vector.
462+
463+ # Operations
464+
465+ - `predict(mach, Xnew)`: Return predictions of the target given new
466+ features `Xnew` having the same Scitype as `X` above.
467+
468+ # Fitted parameters
469+
470+ TODO: Example, coeff, report
471+
472+ The fields of `fitted_params(mach)` are:
473+
474+
475+ # Examples
476+
477+ ```
478+ using MLJ
479+
480+ PCA = @load PCA pkg=MultivariateStats
481+
482+ ```
483+
484+ See also
485+ TODO: ADD REFERENCES
486+ """
432487PCA
433488KernelPCA
434489ICA
0 commit comments