@@ -56,7 +56,7 @@ function MMI.fit(model::LDA, ::Int, X, y)
5656 report = (
5757 classes= classes_seen,
5858 out_dim= MS. size (core_res)[2 ],
59- class_means = MS. classmeans (core_res),
59+ projected_class_means = MS. classmeans (core_res),
6060 mean= MS. mean (core_res),
6161 class_weights= MS. classweights (core_res),
6262 Sw= MS. withclass_scatter (core_res),
@@ -221,7 +221,7 @@ function MMI.fit(model::BayesianLDA, ::Int, X, y)
221221 report = (
222222 classes= classes_seen,
223223 out_dim= MS. size (core_res)[2 ],
224- class_means = MS. classmeans (core_res),
224+ projected_class_means = MS. classmeans (core_res),
225225 mean= MS. mean (core_res),
226226 class_weights= MS. classweights (core_res),
227227 Sw= MS. withclass_scatter (core_res),
@@ -356,7 +356,7 @@ function MMI.fit(model::SubspaceLDA, ::Int, X, y)
356356 report = (
357357 explained_variance_ratio= explained_variance_ratio,
358358 classes= classes_seen,
359- class_means = MS. classmeans (core_res),
359+ projected_class_means = MS. classmeans (core_res),
360360 mean= MS. mean (core_res),
361361 class_weights= MS. classweights (core_res),
362362 nc= nc
@@ -366,7 +366,7 @@ function MMI.fit(model::SubspaceLDA, ::Int, X, y)
366366end
367367
368368function MMI. fitted_params (:: SubspaceLDA , (core_res, _))
369- return (class_means = MS. classmeans (core_res), projection_matrix= MS. projection (core_res))
369+ return (projected_class_means = MS. classmeans (core_res), projection_matrix= MS. projection (core_res))
370370end
371371
372372function MMI. predict (m:: SubspaceLDA , (core_res, out_dim, classes_seen), Xnew)
@@ -456,7 +456,7 @@ function MMI.fit(model::BayesianSubspaceLDA, ::Int, X, y)
456456 report = (
457457 explained_variance_ratio= explained_variance_ratio,
458458 classes= classes_seen,
459- class_means = MS. classmeans (core_res),
459+ projected_class_means = MS. classmeans (core_res),
460460 mean= MS. mean (core_res),
461461 class_weights= MS. classweights (core_res),
462462 nc= nc
0 commit comments