Skip to content

Commit 59dea72

Browse files
committed
adapt test to change k -> outdim in ICA
1 parent e36ebf7 commit 59dea72

File tree

1 file changed

+14
-13
lines changed

1 file changed

+14
-13
lines changed

test/models/decomposition_models.jl

Lines changed: 14 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -2,15 +2,15 @@ X, y = @load_crabs
22

33
@testset "PCA" begin
44
X_array = matrix(X)
5-
pratio = 0.9999
5+
variance_ratio = 0.9999
66
# MultivariateStats PCA
77
pca_ms = MultivariateStats.fit(
88
MultivariateStats.PCA,
99
permutedims(X_array),
10-
pratio=pratio
10+
pratio=variance_ratio
1111
)
1212
# MLJ PCA
13-
pca_mlj = PCA(pratio=pratio)
13+
pca_mlj = PCA(variance_ratio=variance_ratio)
1414
test_composition_model(pca_ms, pca_mlj, X, X_array)
1515
end
1616

@@ -28,50 +28,51 @@ end
2828

2929
@testset "ICA" begin
3030
X_array = matrix(X)
31-
k = 5
31+
outdim = 5
3232
tolerance = 5.0
3333
# MultivariateStats ICA
3434
rng = StableRNG(1234) # winit gets randomly initialised
3535
#Random.seed!(1234) # winit gets randomly initialised
3636
ica_ms = MultivariateStats.fit(
3737
MultivariateStats.ICA,
3838
permutedims(X_array),
39-
k;
39+
outdim;
4040
tol=tolerance,
41-
winit = randn(rng, eltype(X_array), size(X_array, 2), k)
41+
winit = randn(rng, eltype(X_array), size(X_array, 2), outdim)
4242
)
4343
# MLJ ICA
4444
rng = StableRNG(1234) # winit gets randomly initialised
4545
#Random.seed!(1234) # winit gets randomly initialised
4646
ica_mlj = ICA(
47-
k=k,
47+
outdim=outdim,
4848
tol=tolerance,
49-
winit=randn(rng, eltype(X_array), size(X_array, 2), k))
49+
winit=randn(rng, eltype(X_array), size(X_array, 2), outdim))
5050
test_composition_model(ica_ms, ica_mlj, X, X_array, test_inverse=false)
5151
end
52+
5253
@testset "ICA2" begin
5354
X_array = matrix(X)
54-
k = 5
55+
outdim = 5
5556
tolerance = 5.0
5657
# MultivariateStats ICA
5758
rng = StableRNG(1234) # winit gets randomly initialised
5859
#Random.seed!(1234) # winit gets randomly initialised
5960
ica_ms = MultivariateStats.fit(
6061
MultivariateStats.ICA,
6162
permutedims(X_array),
62-
k;
63+
outdim;
6364
tol=tolerance,
6465
fun=MultivariateStats.Gaus(),
65-
winit = randn(rng, eltype(X_array), size(X_array, 2), k)
66+
winit = randn(rng, eltype(X_array), size(X_array, 2), outdim)
6667
)
6768
# MLJ ICA
6869
rng = StableRNG(1234) # winit gets randomly initialised
6970
#Random.seed!(1234) # winit gets randomly initialised
7071
ica_mlj = ICA(
71-
k=k,
72+
outdim=outdim,
7273
tol=tolerance,
7374
fun=:gaus,
74-
winit=randn(rng, eltype(X_array), size(X_array, 2), k))
75+
winit=randn(rng, eltype(X_array), size(X_array, 2), outdim))
7576
test_composition_model(ica_ms, ica_mlj, X, X_array, test_inverse=false)
7677
end
7778

0 commit comments

Comments
 (0)