@@ -2,15 +2,15 @@ X, y = @load_crabs
22
33@testset " PCA" begin
44 X_array = matrix (X)
5- pratio = 0.9999
5+ variance_ratio = 0.9999
66 # MultivariateStats PCA
77 pca_ms = MultivariateStats. fit (
88 MultivariateStats. PCA,
99 permutedims (X_array),
10- pratio= pratio
10+ pratio= variance_ratio
1111 )
1212 # MLJ PCA
13- pca_mlj = PCA (pratio = pratio )
13+ pca_mlj = PCA (variance_ratio = variance_ratio )
1414 test_composition_model (pca_ms, pca_mlj, X, X_array)
1515end
1616
2828
2929@testset " ICA" begin
3030 X_array = matrix (X)
31- k = 5
31+ outdim = 5
3232 tolerance = 5.0
3333 # MultivariateStats ICA
3434 rng = StableRNG (1234 ) # winit gets randomly initialised
3535 # Random.seed!(1234) # winit gets randomly initialised
3636 ica_ms = MultivariateStats. fit (
3737 MultivariateStats. ICA,
3838 permutedims (X_array),
39- k ;
39+ outdim ;
4040 tol= tolerance,
41- winit = randn (rng, eltype (X_array), size (X_array, 2 ), k )
41+ winit = randn (rng, eltype (X_array), size (X_array, 2 ), outdim )
4242 )
4343 # MLJ ICA
4444 rng = StableRNG (1234 ) # winit gets randomly initialised
4545 # Random.seed!(1234) # winit gets randomly initialised
4646 ica_mlj = ICA (
47- k = k ,
47+ outdim = outdim ,
4848 tol= tolerance,
49- winit= randn (rng, eltype (X_array), size (X_array, 2 ), k ))
49+ winit= randn (rng, eltype (X_array), size (X_array, 2 ), outdim ))
5050 test_composition_model (ica_ms, ica_mlj, X, X_array, test_inverse= false )
5151end
52+
5253@testset " ICA2" begin
5354 X_array = matrix (X)
54- k = 5
55+ outdim = 5
5556 tolerance = 5.0
5657 # MultivariateStats ICA
5758 rng = StableRNG (1234 ) # winit gets randomly initialised
5859 # Random.seed!(1234) # winit gets randomly initialised
5960 ica_ms = MultivariateStats. fit (
6061 MultivariateStats. ICA,
6162 permutedims (X_array),
62- k ;
63+ outdim ;
6364 tol= tolerance,
6465 fun= MultivariateStats. Gaus (),
65- winit = randn (rng, eltype (X_array), size (X_array, 2 ), k )
66+ winit = randn (rng, eltype (X_array), size (X_array, 2 ), outdim )
6667 )
6768 # MLJ ICA
6869 rng = StableRNG (1234 ) # winit gets randomly initialised
6970 # Random.seed!(1234) # winit gets randomly initialised
7071 ica_mlj = ICA (
71- k = k ,
72+ outdim = outdim ,
7273 tol= tolerance,
7374 fun= :gaus ,
74- winit= randn (rng, eltype (X_array), size (X_array, 2 ), k ))
75+ winit= randn (rng, eltype (X_array), size (X_array, 2 ), outdim ))
7576 test_composition_model (ica_ms, ica_mlj, X, X_array, test_inverse= false )
7677end
7778
0 commit comments