|
8 | 8 | r4 = range(Float32, :r4; lower=-Inf, upper=Inf, origin=0, unit=1)
|
9 | 9 | rs = (r1, r2, r3, r4)
|
10 | 10 | # Test distribution types
|
11 |
| - Ds = (Dirichlet, Uniform, Gamma, Normal) |
| 11 | + Ds = (Uniform, Gamma, Normal) |
12 | 12 | # Manually fitted distributions for test ranges
|
13 | 13 | d1 = Dirichlet(ones(3))
|
14 | 14 | d2 = Uniform(1, 3)
|
|
28 | 28 | Xs = (X1, X2, X3, X4)
|
29 | 29 |
|
30 | 30 | @testset "Initializer" begin
|
31 |
| - for (r, D) in zip(rs, Ds) |
32 |
| - @test PSO._initializer(r) === D |
| 31 | + for (r, D) in zip(rs[2:end], Ds) |
| 32 | + @test PSO._initializer(MLJTuning.boundedness(r)) === D |
33 | 33 | end
|
34 | 34 | end
|
35 | 35 |
|
36 | 36 | @testset "Initialize with distribution types" begin
|
37 | 37 | rng = StableRNG(1234)
|
38 |
| - for (r, D, l, X) in zip(rs, Ds, lengths, Xs) |
| 38 | + PSO._initialize(rng, r1, n) |
| 39 | + for (r, D, l, X) in zip(rs[2:end], Ds, lengths[2:end], Xs[2:end]) |
39 | 40 | r̂, l̂, X̂ = PSO._initialize(rng, r, D, n)[[1,3,4]]
|
40 | 41 | @test r̂ === r
|
41 | 42 | @test l̂ == l
|
|
60 | 61 | @testset "Unsupported distributions" begin
|
61 | 62 | rng = StableRNG(1234)
|
62 | 63 | @test_throws ArgumentError PSO._initialize(rng, r1, Uniform, n)
|
| 64 | + @test_throws ArgumentError PSO._initialize(rng, r1, Dirichlet, n) |
63 | 65 | @test_throws ArgumentError PSO._initialize(rng, r1, d2, n)
|
64 | 66 | @test_throws ArgumentError PSO._initialize(rng, r1, Dirichlet(ones(4)), n)
|
65 | 67 | @test_throws ArgumentError PSO._initialize(rng, r2, Dirichlet, n)
|
|
0 commit comments