|
39 | 39 | _test(data; ignore=true, kwargs...) = _test([], data; ignore, kwargs...)
|
40 | 40 |
|
41 | 41 |
|
42 |
| -# # BABY DATA SETS |
43 |
| - |
44 |
| -""" |
45 |
| - make_binary() |
46 |
| -
|
47 |
| -Return data `(X, y)` for the crabs dataset, restricted to the two features `:FL`, |
48 |
| -`:RW`. Target is `Multiclass{2}`. |
49 |
| -
|
50 |
| -""" |
51 |
| -function make_binary() |
52 |
| - data = MLJ.load_crabs() |
53 |
| - y_, X = unpack(data, ==(:sp), col->col in [:FL, :RW]) |
54 |
| - y = coerce(y_, MLJ.OrderedFactor) |
55 |
| - return X, y |
56 |
| -end |
57 |
| - |
58 |
| -""" |
59 |
| - make_multiclass() |
60 |
| -
|
61 |
| -Return data `(X, y)` for the unshuffled iris dataset. Target is `Multiclass{3}`. |
62 |
| -
|
63 |
| -""" |
64 |
| -make_multiclass() = MLJ.@load_iris |
65 |
| - |
66 |
| -""" |
67 |
| - make_regression() |
68 |
| -
|
69 |
| -Return data `(X, y)` for the Boston dataset, restricted to the two features `:LStat`, |
70 |
| -`:Rm`. Target is `Continuous`. |
71 |
| -
|
72 |
| -""" |
73 |
| -function make_regression() |
74 |
| - data = MLJ.load_boston() |
75 |
| - y, X = unpack(data, ==(:MedV), col->col in [:LStat, :Rm]) |
76 |
| - return X, y |
77 |
| -end |
78 |
| - |
79 |
| -""" |
80 |
| - make_count() |
81 |
| -
|
82 |
| -Return data `(X, y)` for the Boston dataset, restricted to the two features `:LStat`, |
83 |
| -`:Rm`, with the `Continuous` target converted to `Count` (integer). |
84 |
| -
|
85 |
| -""" |
86 |
| -function make_count() |
87 |
| - X, y_ = make_regression() |
88 |
| - y = map(η -> round(Int, η), y_) |
89 |
| - return X, y |
90 |
| -end |
91 |
| - |
92 | 42 |
|
93 | 43 | # # SINGLE TARGET CLASSIFICATION
|
94 | 44 |
|
|
0 commit comments