|
1 | 1 | """
|
2 |
| - make_binary() |
| 2 | + make_binary(; row_table=false) |
3 | 3 |
|
4 | 4 | Return data `(X, y)` for the crabs dataset, restricted to the two features `:FL`,
|
5 | 5 | `:RW`. Target is `Multiclass{2}`.
|
6 | 6 |
|
| 7 | +The table `X` is a named tuple of vectors. For a vector of named tuples, set |
| 8 | +`row_table=true`. |
| 9 | +
|
7 | 10 | """
|
8 |
| -function make_binary() |
| 11 | +function make_binary(; row_table=false) |
9 | 12 | data = MLJBase.load_crabs()
|
10 | 13 | y_, X = unpack(data, ==(:sp), col->col in [:FL, :RW])
|
11 | 14 | y = coerce(y_, MLJBase.OrderedFactor)
|
12 |
| - return X, y |
| 15 | + row_table ? (MLJBase.Tables.rowtable(X), y) : (X, y) |
13 | 16 | end
|
14 | 17 |
|
15 | 18 | """
|
16 |
| - make_multiclass() |
| 19 | + make_multiclass(; row_table=false) |
17 | 20 |
|
18 | 21 | Return data `(X, y)` for the unshuffled iris dataset. Target is `Multiclass{3}`.
|
19 | 22 |
|
20 | 23 | """
|
21 |
| -make_multiclass() = MLJBase.@load_iris |
| 24 | +function make_multiclass(; row_table=false) |
| 25 | + X, y = MLJBase.@load_iris |
| 26 | + row_table ? (MLJBase.Tables.rowtable(X), y) : (X, y) |
| 27 | +end |
22 | 28 |
|
23 | 29 | """
|
24 |
| - make_regression() |
| 30 | + make_regression(; row_table=false) |
25 | 31 |
|
26 | 32 | Return data `(X, y)` for the Boston dataset, restricted to the two features `:LStat`,
|
27 | 33 | `:Rm`. Target is `Continuous`.
|
28 | 34 |
|
| 35 | +The table `X` is a named tuple of vectors. For a vector of named tuples, set |
| 36 | +`row_table=true`. |
| 37 | +
|
29 | 38 | """
|
30 |
| -function make_regression() |
| 39 | +function make_regression(; row_table=false) |
31 | 40 | data = MLJBase.load_boston()
|
32 | 41 | y, X = unpack(data, ==(:MedV), col->col in [:LStat, :Rm])
|
33 |
| - return X, y |
| 42 | + row_table ? (MLJBase.Tables.rowtable(X), y) : (X, y) |
34 | 43 | end
|
35 | 44 |
|
36 | 45 | """
|
37 |
| - make_count() |
| 46 | + make_count(; row_table=false) |
38 | 47 |
|
39 | 48 | Return data `(X, y)` for the Boston dataset, restricted to the two features `:LStat`,
|
40 | 49 | `:Rm`, with the `Continuous` target converted to `Count` (integer).
|
41 | 50 |
|
| 51 | +The table `X` is a named tuple of vectors. For a vector of named tuples, set |
| 52 | +`row_table=true`. |
| 53 | +
|
42 | 54 | """
|
43 |
| -function make_count() |
| 55 | +function make_count(; row_table=false) |
44 | 56 | X, y_ = make_regression()
|
45 | 57 | y = map(η -> round(Int, η), y_)
|
46 |
| - return X, y |
| 58 | + row_table ? (MLJBase.Tables.rowtable(X), y) : (X, y) |
47 | 59 | end
|
0 commit comments