-BM25 is an approach similar to that of TF-IDF in terms of representing documents in a vector space. The BM25 scoring function uses both term frequency (TF) and inverse document frequency (IDF) so that, for each term in a document, its relative concentration in the document is scored (like TF-IDF). However, BM25 improves upon TF-IDF by incorporating probability - particularly, the probability that a user will consider a search result relevant based on the terms in the search query and those in each document.
0 commit comments