|
82 | 82 | end |
83 | 83 | # test that fit is correct for dummy Coding |
84 | 84 | cache = contrast_encoder_fit(X, [:name]; ignore = false, mode = :dummy) |
85 | | - k = length(levels(X.name)) |
| 85 | + k = length(rawlevels(X.name)) |
86 | 86 | contrast_matrix = get_dummy_contrast(k) |
87 | | - for (i, level) in enumerate(levels(X.name)) |
| 87 | + for (i, level) in enumerate(rawlevels(X.name)) |
88 | 88 | @test cache.vector_given_value_given_feature[:name][level] == contrast_matrix[i, :] |
89 | 89 | end |
90 | 90 | end |
|
110 | 110 | @test size(contrast_matrix_3) == (3, 2) |
111 | 111 | # test that fit is correct for sum Coding |
112 | 112 | cache = contrast_encoder_fit(X, [:name, :favnum]; ignore = false, mode = :sum) |
113 | | - k = length(levels(X.favnum)) |
| 113 | + k = length(rawlevels(X.favnum)) |
114 | 114 | contrast_matrix = get_sum_contrast(k) |
115 | | - for (i, level) in enumerate(levels(X.favnum)) |
| 115 | + for (i, level) in enumerate(rawlevels(X.favnum)) |
116 | 116 | @test cache.vector_given_value_given_feature[:favnum][level] == |
117 | 117 | contrast_matrix[i, :] |
118 | 118 | end |
|
130 | 130 |
|
131 | 131 | # Test that fit is correct for backward Coding |
132 | 132 | cache = contrast_encoder_fit(X, [:name, :favnum]; ignore = false, mode = :backward_diff) |
133 | | - k = length(levels(X.favnum)) |
| 133 | + k = length(rawlevels(X.favnum)) |
134 | 134 | contrast_matrix = get_backward_diff_contrast(k) |
135 | | - for (i, level) in enumerate(levels(X.favnum)) |
| 135 | + for (i, level) in enumerate(rawlevels(X.favnum)) |
136 | 136 | @test cache.vector_given_value_given_feature[:favnum][level] == |
137 | 137 | contrast_matrix[i, :] |
138 | 138 | end |
|
148 | 148 |
|
149 | 149 | # Test that fit is correct for forward Coding |
150 | 150 | cache = contrast_encoder_fit(X, [:name, :favnum]; ignore = false, mode = :forward_diff) |
151 | | - k = length(levels(X.favnum)) |
| 151 | + k = length(rawlevels(X.favnum)) |
152 | 152 | contrast_matrix = get_forward_diff_contrast(k) |
153 | | - for (i, level) in enumerate(levels(X.favnum)) |
| 153 | + for (i, level) in enumerate(rawlevels(X.favnum)) |
154 | 154 | @test cache.vector_given_value_given_feature[:favnum][level] == |
155 | 155 | contrast_matrix[i, :] |
156 | 156 | end |
|
171 | 171 | 0.0 0.0 3.0] |
172 | 172 | # test that fit is correct for helmert Coding |
173 | 173 | cache = contrast_encoder_fit(X, [:name, :favnum]; ignore = false, mode = :helmert) |
174 | | - k = length(levels(X.name)) |
| 174 | + k = length(rawlevels(X.name)) |
175 | 175 | contrast_matrix = get_helmert_contrast(k) |
176 | | - for (i, level) in enumerate(levels(X.name)) |
| 176 | + for (i, level) in enumerate(rawlevels(X.name)) |
177 | 177 | @test cache.vector_given_value_given_feature[:name][level] == contrast_matrix[i, :] |
178 | 178 | end |
179 | 179 | end |
@@ -227,12 +227,12 @@ end |
227 | 227 | contrasts = Dict( |
228 | 228 | :name => StatsModels.HypothesisCoding( |
229 | 229 | buildrandomhypothesis(nothing, 3); |
230 | | - levels = levels(X.name), |
| 230 | + levels = rawlevels(X.name), |
231 | 231 | labels = [], |
232 | 232 | ), |
233 | 233 | :favnum => StatsModels.HypothesisCoding( |
234 | 234 | buildrandomhypothesis(nothing, 4); |
235 | | - levels = levels(X.favnum), |
| 235 | + levels = rawlevels(X.favnum), |
236 | 236 | labels = [], |
237 | 237 | ), |
238 | 238 | ), |
|
263 | 263 | StatsModels.HelmertCoding(), |
264 | 264 | StatsModels.HypothesisCoding( |
265 | 265 | buildrandomhypothesis(nothing, k); |
266 | | - levels = (k == 3) ? levels(X.name) : levels(X.favnum), |
| 266 | + levels = (k == 3) ? rawlevels(X.name) : rawlevels(X.favnum), |
267 | 267 | labels = [], |
268 | 268 | ), |
269 | 269 | ][ind] |
|
304 | 304 | StatsModels.HelmertCoding(), |
305 | 305 | StatsModels.HypothesisCoding( |
306 | 306 | buildrandomhypothesis(nothing, k); |
307 | | - levels = (k == 3) ? levels(X.name) : levels(X.favnum), |
| 307 | + levels = (k == 3) ? rawlevels(X.name) : rawlevels(X.favnum), |
308 | 308 | labels = [], |
309 | 309 | ), |
310 | 310 | ][ind] |
|
0 commit comments