|
63 | 63 | X, y = classification_forms[1] |
64 | 64 | n = length(y) |
65 | 65 |
|
66 | | - A_col, C_col, D_col, F_col = MMI.selectcols(X, [1, 3, 4, 6]) |
| 66 | + A_col, C_col, D_col, F_col = selectcols(X, [1, 3, 4, 6]) |
67 | 67 | true_output = Dict{Symbol, Dict{Any, AbstractFloat}}( |
68 | 68 | :F => Dict( |
69 | 69 | "m" => sum(y[F_col.=="m"] .== 0) / length(y[F_col.=="m"]), |
|
119 | 119 | n = length(y) |
120 | 120 | μ̂ = mean(y) |
121 | 121 |
|
122 | | - A_col, C_col, D_col, F_col = MMI.selectcols(X, [1, 3, 4, 6]) |
| 122 | + A_col, C_col, D_col, F_col = selectcols(X, [1, 3, 4, 6]) |
123 | 123 | true_output = Dict{Symbol, Dict{Any, AbstractFloat}}( |
124 | 124 | :F => Dict( |
125 | 125 | "m" => mean(y[F_col.=="m"]), |
|
172 | 172 | y_classes = classes(y) |
173 | 173 | n = length(y) |
174 | 174 |
|
175 | | - A_col, C_col, D_col, F_col = MMI.selectcols(X, [1, 3, 4, 6]) |
| 175 | + A_col, C_col, D_col, F_col = selectcols(X, [1, 3, 4, 6]) |
176 | 176 | true_output = Dict{Symbol, Dict{Any, AbstractVector{AbstractFloat}}}( |
177 | 177 | :F => Dict( |
178 | 178 | "m" => |
|
320 | 320 | TargetEncoder(ignore = true, ordered_factor = false, lambda = 0.5, m = 1.0) |
321 | 321 | mach = machine(encoder, X, y) |
322 | 322 | fit!(mach) |
323 | | - Xnew_transf = MMI.transform(mach, X) |
| 323 | + Xnew_transf = MLJBase.transform(mach, X) |
324 | 324 |
|
325 | 325 | # same output |
326 | 326 | @test X_transf == Xnew_transf |
|
386 | 386 |
|
387 | 387 | encoder = TargetEncoder(ordered_factor = false, lambda = 1.0, m = 0) |
388 | 388 | mach = fit!(machine(encoder, X, y)) |
389 | | - Xnew = MMI.transform(mach, X) |
| 389 | + Xnew = MLJBase.transform(mach, X) |
390 | 390 |
|
391 | 391 | scs = schema(Xnew).scitypes |
392 | 392 | ts = schema(Xnew).types |
|
0 commit comments