@@ -13,7 +13,7 @@ using Pkg;
1313Pkg. activate (@__DIR__ );
1414Pkg. instantiate (); # src
1515
16- using MLJ, MLJTransforms, LIBSVM, DataFrames, ScientificTypes
16+ using MLJ, LIBSVM, DataFrames, ScientificTypes
1717using Random, CSV, Plots
1818
1919# ## Load and Prepare Data
@@ -33,7 +33,7 @@ ScientificTypes.schema(df)
3333# Automatically coerce columns with few unique values to categorical:
3434df = coerce (df, autotype (df, :few_to_finite ))
3535
36- ScientificTypes . schema (df)
36+ schema (df)
3737
3838# ## Split Data
3939# Separate features from target and create train/test split:
@@ -43,7 +43,6 @@ train, test = partition(eachindex(y), 0.9, shuffle = true, rng = 100);
4343# ## Setup Encoders and Classifier
4444# Load the required models and create different encoding strategies:
4545
46- OneHot = @load OneHotEncoder pkg = MLJModels verbosity = 0
4746SVC = @load SVC pkg = LIBSVM verbosity = 0
4847
4948# **Encoding Strategies Explained:**
@@ -52,10 +51,10 @@ SVC = @load SVC pkg = LIBSVM verbosity = 0
5251# 3. **Target**: Uses target statistics for each category
5352# 4. **Ordinal**: Assigns integer codes to categories (assumes ordering)
5453
55- onehot_model = OneHot (drop_last = true , ordered_factor = true )
56- freq_model = MLJTransforms . FrequencyEncoder (normalize = false , ordered_factor = true )
57- target_model = MLJTransforms . TargetEncoder (lambda = 0.9 , m = 5 , ordered_factor = true )
58- ordinal_model = MLJTransforms . OrdinalEncoder (ordered_factor = true )
54+ onehot_model = OneHotEncoder (drop_last = true , ordered_factor = true )
55+ freq_model = FrequencyEncoder (normalize = false , ordered_factor = true )
56+ target_model = TargetEncoder (lambda = 0.9 , m = 5 , ordered_factor = true )
57+ ordinal_model = OrdinalEncoder (ordered_factor = true )
5958svm = SVC ()
6059
6160# Create four different pipelines to compare:
0 commit comments