Skip to content

Commit 9a36f99

Browse files
committed
minor
1 parent e348ccd commit 9a36f99

File tree

2 files changed

+9
-15
lines changed

2 files changed

+9
-15
lines changed

docs/src/tutorials/entity_embeddings/notebook.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -20,9 +20,9 @@
2020
# - Visualize the learned embedding spaces
2121
# - Build pipelines combining embeddings with downstream models
2222

23-
using Pkg;
24-
Pkg.activate(@__DIR__);
25-
Pkg.instantiate(); #src
23+
using Pkg; # src
24+
Pkg.activate(@__DIR__); #src
25+
Pkg.instantiate(); #src
2626

2727

2828

docs/src/tutorials/entity_embeddings/notebook.md

Lines changed: 6 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -25,8 +25,7 @@ In this tutorial, we will explore how to use the `EntityEmbedder` to learn and a
2525
- Build pipelines combining embeddings with downstream models
2626

2727
````julia
28-
using Pkg;
29-
Pkg.activate(@__DIR__);
28+
using Pkg; # src
3029

3130

3231

@@ -46,11 +45,6 @@ using StatsBase ## For countmap
4645
import Plots: mm ## For margin units
4746
````
4847

49-
````
50-
Activating project at `~/Documents/GitHub/MLJTransforms/docs/src/tutorials/entity_embeddings`
51-
52-
````
53-
5448
## Data Loading and Preprocessing
5549

5650
We'll use the Google Play Store dataset which contains information about mobile applications.
@@ -185,7 +179,7 @@ println("\nUnique rating categories: $(sort(unique(df.RatingCategory)))")
185179

186180
````
187181
Distribution of categorical rating labels:
188-
OrderedCollections.OrderedDict{CategoricalValue{String, UInt32}, Int64}("1.0" => 17, "1.5" => 18, "2.0" => 53, "2.5" => 105, "3.0" => 281, "3.5" => 722, "4.0" => 2420, "4.5" => 3542, "5.0" => 571, "NaN" => 1416)
182+
OrderedCollections.OrderedDict{CategoricalArrays.CategoricalValue{String, UInt32}, Int64}("1.0" => 17, "1.5" => 18, "2.0" => 53, "2.5" => 105, "3.0" => 281, "3.5" => 722, "4.0" => 2420, "4.5" => 3542, "5.0" => 571, "NaN" => 1416)
189183
190184
Unique rating categories: ["1.0", "1.5", "2.0", "2.5", "3.0", "3.5", "4.0", "4.5", "5.0", "NaN"]
191185
@@ -320,7 +314,7 @@ EntityEmbedder(
320314
alpha = 0.0,
321315
rng = 39,
322316
optimiser_changes_trigger_retraining = false,
323-
acceleration = CUDALibs{Nothing}(nothing),
317+
acceleration = ComputationalResources.CUDALibs{Nothing}(nothing),
324318
embedding_dims = Dict{Symbol, Real}(:Category => 2, Symbol("Content Rating") => 2, Symbol("Android Ver") => 2, :Genres => 2, :Type => 2)))
325319
````
326320

@@ -340,7 +334,7 @@ MLJ.fit!(mach, force = true, verbosity = 1);
340334
│ `CUDA.jl` must be loaded to access it.
341335
└ Add `using CUDA` or `import CUDA` to your code. Alternatively, configure a different GPU backend by calling `Flux.gpu_backend!`.
342336
[ Info: MLJFlux: converting input data to Float32
343-
Optimising neural net: 33%[========> ] ETA: 0:00:00[KOptimising neural net: 50%[============> ] ETA: 0:00:00[KOptimising neural net: 67%[================> ] ETA: 0:00:00[KOptimising neural net: 83%[====================> ] ETA: 0:00:00[KOptimising neural net: 100%[=========================] Time: 0:00:00[K
337+
Optimising neural net: 33%[========> ] ETA: 0:00:28[KOptimising neural net: 83%[====================> ] ETA: 0:00:03[KOptimising neural net: 100%[=========================] Time: 0:00:14[K
344338
345339
````
346340

@@ -388,8 +382,8 @@ MLJ.fit!(pipe_mach, verbosity = 0)
388382
trained Machine; does not cache data
389383
model: ProbabilisticPipeline(entity_embedder = EntityEmbedder(model = NeuralNetworkClassifier(builder = Short(n_hidden = 14, …), …)), …)
390384
args:
391-
1: Source @927 ⏎ Table{Union{AbstractVector{Continuous}, AbstractVector{Multiclass{33}}, AbstractVector{Multiclass{2}}, AbstractVector{Multiclass{6}}, AbstractVector{Multiclass{48}}, AbstractVector{Multiclass{34}}}}
392-
2: Source @044 ⏎ AbstractVector{OrderedFactor{10}}
385+
1: Source @148ScientificTypesBase.Table{Union{AbstractVector{ScientificTypesBase.Continuous}, AbstractVector{ScientificTypesBase.Multiclass{33}}, AbstractVector{ScientificTypesBase.Multiclass{2}}, AbstractVector{ScientificTypesBase.Multiclass{6}}, AbstractVector{ScientificTypesBase.Multiclass{48}}, AbstractVector{ScientificTypesBase.Multiclass{34}}}}
386+
2: Source @429 ⏎ AbstractVector{ScientificTypesBase.OrderedFactor{10}}
393387
394388
````
395389

0 commit comments

Comments
 (0)