@@ -47,16 +47,16 @@ multitarget_L1(ŷ, y, weights)
47
47
```
48
48
49
49
``` @example 01
50
- using Tables
51
- t = y' |> Tables.table |> Tables.rowtable
52
- t̂ = ŷ' |> Tables.table |> Tables.rowtable
53
- multitarget_L1(t̂, t , weights)
50
+ using DataFrames
51
+ df = DataFrame(y', :auto)
52
+ df̂ = DataFrame( ŷ', :auto)
53
+ multitarget_L1(df̂, df , weights)
54
54
```
55
55
56
- Generate measurements * for each observation* with the ` measurement ` method:
56
+ Generate measurements * for each observation* with the ` measurements ` method:
57
57
58
58
``` @example 01
59
- measurements(multitarget_L1, t̂, t , weights)
59
+ measurements(multitarget_L1, df̂, df , weights)
60
60
```
61
61
62
62
# Overview
@@ -69,7 +69,7 @@ measures. For a package that does, based on this interface, see
69
69
can also be applied to measures provided by other packages, such as
70
70
[ LossFunctions.jl] ( https://github.com/JuliaML/LossFunctions.jl ) .
71
71
72
- Specically , this package provides:
72
+ Specifically , this package provides:
73
73
74
74
- A measure wrapper [ ` multimeasure ` ] ( @ref ) that leverages MLUtils.jl to broadcast a simple
75
75
measure over multiple observations; the main use case is for extending a measure (e.g.,
0 commit comments