@@ -67,9 +67,9 @@ import MultivariatePolynomials as MP
6767 @polyvar cp
6868 XT = typeof (cp)
6969 @test one (XT) == 1
70- @test_throws ErrorException Monomial (2 )
71- @test (@inferred Monomial (1 )) isa monomial_type (XT)
72- @test Monomial (1 ) == 1
70+ @test_throws ErrorException DynamicPolynomials . Monomial (2 )
71+ @test (@inferred DynamicPolynomials . Monomial (1 )) isa monomial_type (XT)
72+ @test DynamicPolynomials . Monomial (1 ) == 1
7373 @test_throws ErrorException convert (monomial_type (XT), 2 )
7474 @test (@inferred convert (monomial_type (XT), 1 )) isa monomial_type (XT)
7575 @test convert (monomial_type (XT), 1 ) == 1
@@ -83,8 +83,8 @@ import MultivariatePolynomials as MP
8383 @test one (x^ 2 ) isa monomial_type (XT)
8484
8585 @polyvar y
86- @test Monomial ([x, y], [1 , 0 ]) == x
87- @test x != Monomial ([x, y], [0 , 1 ])
86+ @test DynamicPolynomials . Monomial ([x, y], [1 , 0 ]) == x
87+ @test x != DynamicPolynomials . Monomial ([x, y], [0 , 1 ])
8888 end
8989 @testset " MonomialVector" begin
9090 @polyvar x y
@@ -118,25 +118,25 @@ import MultivariatePolynomials as MP
118118 end
119119 @testset " NC Variable * Monomial" begin
120120 @ncpolyvar x y z
121- m = y * Monomial ([y, z, x, z], [0 , 0 , 2 , 1 ])
121+ m = y * DynamicPolynomials . Monomial ([y, z, x, z], [0 , 0 , 2 , 1 ])
122122 @test variables (m) == [y, z, x, z]
123123 @test m. z == [1 , 0 , 2 , 1 ]
124- m = x * Monomial ([z, y, y, z], [0 , 0 , 2 , 1 ])
124+ m = x * DynamicPolynomials . Monomial ([z, y, y, z], [0 , 0 , 2 , 1 ])
125125 @test variables (m) == [z, x, y, y, z]
126126 @test m. z == [0 , 1 , 0 , 2 , 1 ]
127- m = x * Monomial ([y, z, y, z], [0 , 0 , 2 , 1 ])
127+ m = x * DynamicPolynomials . Monomial ([y, z, y, z], [0 , 0 , 2 , 1 ])
128128 @test variables (m) == [y, z, x, y, z]
129129 @test m. z == [0 , 0 , 1 , 2 , 1 ]
130130 end
131131 @testset " NC Monomial * Variable" begin
132132 @ncpolyvar x y z
133- m = Monomial ([x, z, x, y], [2 , 1 , 0 , 0 ]) * y
133+ m = DynamicPolynomials . Monomial ([x, z, x, y], [2 , 1 , 0 , 0 ]) * y
134134 @test variables (m) == [x, z, x, y]
135135 @test m. z == [2 , 1 , 0 , 1 ]
136- m = Monomial ([x, y, y, x], [2 , 1 , 0 , 0 ]) * z
136+ m = DynamicPolynomials . Monomial ([x, y, y, x], [2 , 1 , 0 , 0 ]) * z
137137 @test variables (m) == [x, y, y, z, x]
138138 @test m. z == [2 , 1 , 0 , 1 , 0 ]
139- m = Monomial ([x, y, x, y], [2 , 1 , 0 , 0 ]) * z
139+ m = DynamicPolynomials . Monomial ([x, y, x, y], [2 , 1 , 0 , 0 ]) * z
140140 @test variables (m) == [x, y, z, x, y]
141141 @test m. z == [2 , 1 , 1 , 0 , 0 ]
142142 end
@@ -157,7 +157,7 @@ import MultivariatePolynomials as MP
157157 @test mi == (x^ 4 / 4 )
158158 @test MP. coefficient_type (mi) == Rational{Int}
159159
160- m = Monomial ([x, y, z], [1 , 2 , 3 ])
160+ m = DynamicPolynomials . Monomial ([x, y, z], [1 , 2 , 3 ])
161161 mi = DynamicPolynomials. MP. antidifferentiate (m, z)
162162 @test mi == (x* y^ 2 * z^ 4 ) / 4
163163 @test MP. coefficient_type (mi) == Rational{Int}
0 commit comments