@@ -67,9 +67,9 @@ import MultivariatePolynomials as MP
67
67
@polyvar cp
68
68
XT = typeof (cp)
69
69
@test one (XT) == 1
70
- @test_throws ErrorException Monomial (2 )
71
- @test (@inferred Monomial (1 )) isa monomial_type (XT)
72
- @test Monomial (1 ) == 1
70
+ @test_throws ErrorException DynamicPolynomials . Monomial (2 )
71
+ @test (@inferred DynamicPolynomials . Monomial (1 )) isa monomial_type (XT)
72
+ @test DynamicPolynomials . Monomial (1 ) == 1
73
73
@test_throws ErrorException convert (monomial_type (XT), 2 )
74
74
@test (@inferred convert (monomial_type (XT), 1 )) isa monomial_type (XT)
75
75
@test convert (monomial_type (XT), 1 ) == 1
@@ -83,8 +83,8 @@ import MultivariatePolynomials as MP
83
83
@test one (x^ 2 ) isa monomial_type (XT)
84
84
85
85
@polyvar y
86
- @test Monomial ([x, y], [1 , 0 ]) == x
87
- @test x != Monomial ([x, y], [0 , 1 ])
86
+ @test DynamicPolynomials . Monomial ([x, y], [1 , 0 ]) == x
87
+ @test x != DynamicPolynomials . Monomial ([x, y], [0 , 1 ])
88
88
end
89
89
@testset " MonomialVector" begin
90
90
@polyvar x y
@@ -118,25 +118,25 @@ import MultivariatePolynomials as MP
118
118
end
119
119
@testset " NC Variable * Monomial" begin
120
120
@ncpolyvar x y z
121
- m = y * Monomial ([y, z, x, z], [0 , 0 , 2 , 1 ])
121
+ m = y * DynamicPolynomials . Monomial ([y, z, x, z], [0 , 0 , 2 , 1 ])
122
122
@test variables (m) == [y, z, x, z]
123
123
@test m. z == [1 , 0 , 2 , 1 ]
124
- m = x * Monomial ([z, y, y, z], [0 , 0 , 2 , 1 ])
124
+ m = x * DynamicPolynomials . Monomial ([z, y, y, z], [0 , 0 , 2 , 1 ])
125
125
@test variables (m) == [z, x, y, y, z]
126
126
@test m. z == [0 , 1 , 0 , 2 , 1 ]
127
- m = x * Monomial ([y, z, y, z], [0 , 0 , 2 , 1 ])
127
+ m = x * DynamicPolynomials . Monomial ([y, z, y, z], [0 , 0 , 2 , 1 ])
128
128
@test variables (m) == [y, z, x, y, z]
129
129
@test m. z == [0 , 0 , 1 , 2 , 1 ]
130
130
end
131
131
@testset " NC Monomial * Variable" begin
132
132
@ncpolyvar x y z
133
- m = Monomial ([x, z, x, y], [2 , 1 , 0 , 0 ]) * y
133
+ m = DynamicPolynomials . Monomial ([x, z, x, y], [2 , 1 , 0 , 0 ]) * y
134
134
@test variables (m) == [x, z, x, y]
135
135
@test m. z == [2 , 1 , 0 , 1 ]
136
- m = Monomial ([x, y, y, x], [2 , 1 , 0 , 0 ]) * z
136
+ m = DynamicPolynomials . Monomial ([x, y, y, x], [2 , 1 , 0 , 0 ]) * z
137
137
@test variables (m) == [x, y, y, z, x]
138
138
@test m. z == [2 , 1 , 0 , 1 , 0 ]
139
- m = Monomial ([x, y, x, y], [2 , 1 , 0 , 0 ]) * z
139
+ m = DynamicPolynomials . Monomial ([x, y, x, y], [2 , 1 , 0 , 0 ]) * z
140
140
@test variables (m) == [x, y, z, x, y]
141
141
@test m. z == [2 , 1 , 1 , 0 , 0 ]
142
142
end
@@ -157,7 +157,7 @@ import MultivariatePolynomials as MP
157
157
@test mi == (x^ 4 / 4 )
158
158
@test MP. coefficient_type (mi) == Rational{Int}
159
159
160
- m = Monomial ([x, y, z], [1 , 2 , 3 ])
160
+ m = DynamicPolynomials . Monomial ([x, y, z], [1 , 2 , 3 ])
161
161
mi = DynamicPolynomials. MP. antidifferentiate (m, z)
162
162
@test mi == (x* y^ 2 * z^ 4 ) / 4
163
163
@test MP. coefficient_type (mi) == Rational{Int}
0 commit comments