You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: src/Operators/functionals/Evaluation.jl
+53Lines changed: 53 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -134,19 +134,72 @@ end
134
134
135
135
136
136
evaluate(d::Domain,x) =Evaluation(d,x)
137
+
138
+
"""
139
+
ldiffbc(d::Domain, k)
140
+
141
+
The boundary condition of the `k`-th order derivative on the left endpoint of `d`. See also [`rdiffbc`](@ref), [`ldirichlet`](@ref) and [`lneumann`](@ref).
142
+
"""
137
143
ldiffbc(d,k) =Evaluation(d,leftendpoint,k)
144
+
145
+
"""
146
+
rdiffbc(d::Domain, k)
147
+
148
+
The boundary condition of the `k`-th order derivative on the right endpoint of `d`. See also [`ldiffbc`](@ref), [`rdirichlet`](@ref) and [`rneumann`](@ref).
149
+
"""
138
150
rdiffbc(d,k) =Evaluation(d,rightendpoint,k)
139
151
152
+
"""
153
+
ldirichlet(d::Domain) = ldiffbc(d, 0)
154
+
155
+
The dirichlet boundary condition on the left endpoint of `d`. See also [`rdirichlet`](@ref) and [`ldiffbc`](@ref).
156
+
"""
140
157
ldirichlet(d) =ldiffbc(d,0)
158
+
159
+
"""
160
+
rdirichlet(d::Domain) = rdiffbc(d, 0)
161
+
162
+
The dirichlet boundary condition on the right endpoint of `d`. See also [`ldirichlet`](@ref) and [`rdiffbc`](@ref).
163
+
"""
141
164
rdirichlet(d) =rdiffbc(d,0)
165
+
166
+
"""
167
+
lneumann(d::Domain) = ldiffbc(d, 1)
168
+
169
+
The neumann boundary condition on the left endpoint of `d`. See also [`rneumann`](@ref) and [`ldiffbc`](@ref).
170
+
"""
142
171
lneumann(d) =ldiffbc(d,1)
172
+
173
+
"""
174
+
rneumann(d::Domain) = rdiffbc(d, 1)
175
+
176
+
The neumann boundary condition on the right endpoint of `d`. See also [`lneumann`](@ref) and [`rdiffbc`](@ref).
177
+
"""
143
178
rneumann(d) =rdiffbc(d,1)
144
179
180
+
"""
181
+
ivp(d::Domain, k) = [ldiffbc(d,i) for i=0:k-1]
182
+
ivp(d) = ivp(d,2)
145
183
184
+
The conditions for the `k`-th order initial value problem. See also [`ldiffbc`](@ref), [`bvp`](@ref) and [`periodic`](@ref).
185
+
"""
146
186
ivp(d,k) = [ldiffbc(d,i) for i=0:k-1]
187
+
188
+
"""
189
+
bvp(d::Domain, k) = vcat([ldiffbc(d,i) for i=0:div(k,2)-1],
190
+
[rdiffbc(d,i) for i=0:div(k,2)-1])
191
+
bvp(d) = bvp(d,2)
192
+
193
+
The conditions for the `k`-th order boundary value problem. See also [`ldiffbc`](@ref), [`rdiffbc`](@ref), [`ivp`](@ref) and [`periodic`](@ref).
194
+
"""
147
195
bvp(d,k) =vcat([ldiffbc(d,i) for i=0:div(k,2)-1],
148
196
[rdiffbc(d,i) for i=0:div(k,2)-1])
149
197
198
+
"""
199
+
periodic(d::Domain,k) = [ldiffbc(d,i) - rdiffbc(d,i) for i=0:k]
200
+
201
+
The conditions for the `k`-th order periodic problem. See also [`ldiffbc`](@ref), [`rdiffbc`](@ref), [`ivp`](@ref) and [`bvp`](@ref)
202
+
"""
150
203
periodic(d,k) = [ldiffbc(d,i) -rdiffbc(d,i) for i=0:k]
0 commit comments