@@ -68,15 +68,15 @@ coefficienttimes(f::Fun{Laurent{DD,RR}},g::Fun{Laurent{DD,RR}}) where {DD,RR} =
68
68
69
69
# override map definition
70
70
function Derivative (S:: Hardy{<:Any,<:Circle} , k:: Number )
71
- @assert Integer (k) == k " order must be an integer "
71
+ assert_integer (k)
72
72
ConcreteDerivative (S,k)
73
73
end
74
74
function Derivative (S:: Hardy{<:Any,<:PeriodicSegment} , k:: Number )
75
- @assert Integer (k) == k " order must be an integer "
75
+ assert_integer (k)
76
76
ConcreteDerivative (S,k)
77
77
end
78
78
function Derivative (S:: Laurent{<:Circle} , k:: Number )
79
- @assert Integer (k) == k " order must be an integer "
79
+ assert_integer (k)
80
80
t = map (s-> Derivative (s,k), S. spaces)
81
81
v = convert_vector_or_svector (t)
82
82
D = Diagonal (v)
@@ -149,7 +149,10 @@ getindex(D::ConcreteDerivative{Hardy{false,DD,RR},OT,T},k::Integer,j::Integer) w
149
149
# end
150
150
151
151
152
- Integral (S:: Hardy{s,DD,RR} ,k:: Integer ) where {s,DD<: Circle ,RR} = ConcreteIntegral (S,k)
152
+ function Integral (S:: Hardy{s,DD,RR} , k:: Number ) where {s,DD<: Circle ,RR}
153
+ assert_integer (k)
154
+ ConcreteIntegral (S,k)
155
+ end
153
156
154
157
bandwidths (D:: ConcreteIntegral{Taylor{DD,RR}} ) where {DD<: Circle ,RR} = (D. order,0 )
155
158
rangespace (Q:: ConcreteIntegral{Hardy{s,DD,RR}} ) where {s,DD<: Circle ,RR} = Q. space
@@ -172,7 +175,8 @@ function getindex(D::ConcreteIntegral{Taylor{DD,RR}},k::Integer,j::Integer) wher
172
175
end
173
176
174
177
175
- function Integral (S:: SubSpace{<:Hardy{false,<:Circle}, <:AbstractInfUnitRange{Int}} ,k:: Integer )
178
+ function Integral (S:: SubSpace{<:Hardy{false,<:Circle}, <:AbstractInfUnitRange{Int}} , k:: Number )
179
+ assert_integer (k)
176
180
if first (S. indexes) == k+ 1
177
181
ConcreteIntegral (S,k)
178
182
else
0 commit comments