|
1 | 1 | using ApproxFunFourier, ApproxFunBase, Test, SpecialFunctions, LinearAlgebra
|
2 |
| - import ApproxFunBase: testspace, testtransforms, testmultiplication, |
| 2 | + import ApproxFunBase: testspace, testtransforms, testmultiplication, testraggedbelowoperator, |
3 | 3 | testbandedoperator, testblockbandedoperator, testbandedblockbandedoperator, testcalculus, Block, Vec, testfunctional
|
4 | 4 | import SpecialFunctions: factorial
|
5 | 5 |
|
|
453 | 453 | @test (m+I)(0.1) ≈ m(0.1)+I
|
454 | 454 | end
|
455 | 455 |
|
456 |
| - @testset "Two circles" begin |
| 456 | + @testset "Two circles" begin |
457 | 457 | Γ = Circle() ∪ Circle(0.5)
|
458 | 458 |
|
459 | 459 | f = Fun(z -> in(z,component(Γ,2)) ? 1 : z,Γ)
|
|
471 | 471 | @test G1(exp(0.1im)) ≈ [exp(0.1im),0.]
|
472 | 472 | @test G1(0.5exp(0.1im)) ≈ [1,0.]
|
473 | 473 |
|
| 474 | + let f = G[1,1], sp = space(G1)[1,1] # test diagonal eltype bug |
| 475 | + D = Diagonal([map(Multiplication,components(f),sp.spaces)...]) |
| 476 | + @test eltype(Matrix(D)) == Operator{ComplexF64} |
| 477 | + testraggedbelowoperator(Multiplication(f, sp)) |
| 478 | + end |
| 479 | + |
474 | 480 | M = Multiplication(G, space(G1))
|
475 | 481 | testblockbandedoperator(M)
|
476 | 482 |
|
|
0 commit comments