@@ -69,14 +69,17 @@ coefficienttimes(f::Fun{Laurent{DD,RR}},g::Fun{Laurent{DD,RR}}) where {DD,RR} =
69
69
# override map definition
70
70
function Derivative (S:: Hardy{<:Any,<:Circle} , k:: Number )
71
71
assert_integer (k)
72
+ @assert k > 0 " order of derivative must be > 0"
72
73
ConcreteDerivative (S,k)
73
74
end
74
75
function Derivative (S:: Hardy{<:Any,<:PeriodicSegment} , k:: Number )
75
76
assert_integer (k)
77
+ @assert k > 0 " order of derivative must be > 0"
76
78
ConcreteDerivative (S,k)
77
79
end
78
80
function Derivative (S:: Laurent{<:Circle} , k:: Number )
79
81
assert_integer (k)
82
+ @assert k > 0 " order of derivative must be > 0"
80
83
t = map (s-> Derivative (s,k), S. spaces)
81
84
v = convert_vector_or_svector (t)
82
85
D = Diagonal (v)
@@ -85,7 +88,8 @@ function Derivative(S::Laurent{<:Circle}, k::Number)
85
88
end
86
89
87
90
bandwidths (D:: ConcreteDerivative{Hardy{s,DD,RR}} ) where {s,DD<: PeriodicSegment ,RR}= (0 ,0 )
88
- bandwidths (D:: ConcreteDerivative{Hardy{s,DD,RR}} ) where {s,DD<: Circle ,RR}= s ? (- D. order,D. order) : (D. order,- D. order)
91
+ bandwidths (D:: ConcreteDerivative{Hardy{s,DD,RR}} ) where {s,DD<: Circle ,RR} = s ? (- D. order,D. order) : (D. order,- D. order)
92
+ isdiag (D:: ConcreteDerivative{Hardy{s,DD,RR}} ) where {s,DD<: Circle ,RR} = false
89
93
90
94
rangespace (D:: ConcreteDerivative{S} ) where {S<: Hardy }= D. space
91
95
@@ -151,10 +155,12 @@ getindex(D::ConcreteDerivative{Hardy{false,DD,RR},OT,T},k::Integer,j::Integer) w
151
155
152
156
function Integral (S:: Hardy{s,DD,RR} , k:: Number ) where {s,DD<: Circle ,RR}
153
157
assert_integer (k)
158
+ @assert k > 0 " order of integral must be > 0"
154
159
ConcreteIntegral (S,k)
155
160
end
156
161
157
162
bandwidths (D:: ConcreteIntegral{Taylor{DD,RR}} ) where {DD<: Circle ,RR} = (D. order,0 )
163
+ isdiag (D:: ConcreteIntegral{Taylor{DD,RR}} ) where {DD<: Circle ,RR} = false
158
164
rangespace (Q:: ConcreteIntegral{Hardy{s,DD,RR}} ) where {s,DD<: Circle ,RR} = Q. space
159
165
160
166
function getindex (D:: ConcreteIntegral{Taylor{DD,RR}} ,k:: Integer ,j:: Integer ) where {DD<: Circle ,RR}
177
183
178
184
function Integral (S:: SubSpace{<:Hardy{false,<:Circle}, <:AbstractInfUnitRange{Int}} , k:: Number )
179
185
assert_integer (k)
186
+ @assert k > 0 " order of integral must be > 0"
180
187
if first (S. indexes) == k+ 1
181
188
ConcreteIntegral (S,k)
182
189
else
0 commit comments