@@ -163,27 +163,29 @@ function jacobiweightDerivative(S::JacobiWeight{<:Any,<:ChebyshevInterval})
163
163
oneT = oneunit (zeroT)
164
164
DSsp = Derivative (S. space)
165
165
166
- if S. β == S. α == 0
166
+ Sβ, Sα = S. β, S. α
167
+
168
+ if Sβ == Sα == 0
167
169
DerivativeWrapper (SpaceOperator (DSsp,S,
168
170
JacobiWeight (zeroT,zeroT,rangespace (DSsp))),1 )
169
- elseif S . β == 0
171
+ elseif Sβ == 0
170
172
w = Fun (JacobiWeight (zeroT,oneT,ConstantSpace (d)),[1.0 ])
171
173
172
- DDβ0 = - S . α + w* DSsp
173
- rsβ0 = JacobiWeight (zeroT,S . α - 1 ,rangespace (DDβ0))
174
+ DDβ0 = ConstantOperator ( - Sα) + w* DSsp
175
+ rsβ0 = JacobiWeight (zeroT,Sα - 1 ,rangespace (DDβ0))
174
176
DerivativeWrapper (SpaceOperator (DDβ0,S,rsβ0),1 )
175
- elseif S . α == 0
177
+ elseif Sα == 0
176
178
w = Fun (JacobiWeight (oneT,zeroT,ConstantSpace (d)),[1.0 ])
177
179
178
- DDα0 = S . β + w* DSsp
179
- rsα0 = JacobiWeight (S . β - 1 ,zeroT,rangespace (DDα0))
180
+ DDα0 = ConstantOperator (Sβ) + w* DSsp
181
+ rsα0 = JacobiWeight (Sβ - 1 ,zeroT,rangespace (DDα0))
180
182
DerivativeWrapper (SpaceOperator (DDα0,S,rsα0),1 )
181
183
else
182
184
w = Fun (JacobiWeight (oneT,oneT,ConstantSpace (d)),[1.0 ])
183
185
x= Fun ()
184
186
185
- DD = S . β * (1 - x) - S . α * (1 + x) + w* DSsp
186
- rs = JacobiWeight (S . β - 1 ,S . α - 1 ,rangespace (DD))
187
+ DD = Sβ * (1 - x) - Sα * (1 + x) + w* DSsp
188
+ rs = JacobiWeight (Sβ - 1 ,Sα - 1 ,rangespace (DD))
187
189
DerivativeWrapper (SpaceOperator (DD,S,rs),1 )
188
190
end
189
191
end
0 commit comments