@@ -144,21 +144,21 @@ end
144
144
S = Jacobi (half (Odd (1 )), half (Odd (3 )))
145
145
@test @inferred (domainspace (@inferred Multiplication (f,S))) == S
146
146
147
- @testset for β in 0 : 0.5 : 5 , α in 0 : 0.5 : 5
147
+ @testset for β in - 3 : 0.5 : 5 , α in - 3 : 0.5 : 5
148
148
f = genf (β, α)
149
149
g = Fun (x-> (1 + x)^ 2 * (1 + x)^ β * (1 - x)^ α, JacobiWeight (β+ 2 , α, Chebyshev ()))
150
150
@testset for b in 0 : 8 , a in 0 : 8
151
151
S = Jacobi (b,a)
152
152
w = Fun (x-> (1 + x)^ 2 , S)
153
153
M = Multiplication (f, S)
154
154
@test domainspace (M) == S
155
- if isinteger (β) && isinteger (α) && b >= β && a >= α
155
+ reduceorders = (β ≥ 1 && b > 0 ) || (α ≥ 1 && a > 0 )
156
+ if isinteger (β) && isinteger (α) && reduceorders && b >= β >= 0 && a >= α >= 0
156
157
@test rangespace (M) == Jacobi (b- β, a- α)
157
- elseif isinteger (β) && isinteger (α) && b < β && a < α
158
+ elseif isinteger (β) && isinteger (α) && reduceorders && 0 <= b < β && 0 <= a < α
158
159
@test rangespace (M) == JacobiWeight (β- b, α- a, Legendre ())
159
- elseif ! isinteger (β) && (! isinteger (α) || α == 0 )
160
- @test rangespace (M) == JacobiWeight (β, α, S)
161
- elseif ! isinteger (α) && (! isinteger (β) || β == 0 )
160
+ elseif ! isinteger (β) && ! (isinteger (α) && α >= 1 ) ||
161
+ ! isinteger (α) && ! (isinteger (β) && β >= 1 )
162
162
@test rangespace (M) == JacobiWeight (β, α, S)
163
163
end
164
164
@test Multiplication (f) * w ≈ M * w ≈ g
0 commit comments