@@ -118,15 +118,15 @@ factorize(L::SubQuasiArray{T,2,<:ChebyshevU,<:Tuple{<:Inclusion,<:OneTo}}) where
118
118
# Jacobi Matrix
119
119
# #######
120
120
121
- jacobimatrix (C:: ChebyshevT{T} ) where T =
121
+ jacobimatrix (C:: ChebyshevT{T} ) where T =
122
122
Tridiagonal (Vcat (one (T), Fill (one (T)/ 2 ,∞)), Zeros {T} (∞), Fill (one (T)/ 2 ,∞))
123
123
124
124
jacobimatrix (C:: ChebyshevU{T} ) where T =
125
125
SymTridiagonal (Zeros {T} (∞), Fill (one (T)/ 2 ,∞))
126
126
127
127
128
128
129
- # These return vectors A[k], B[k], C[k] are from DLMF.
129
+ # These return vectors A[k], B[k], C[k] are from DLMF.
130
130
recurrencecoefficients (C:: ChebyshevT ) = (Vcat (1 , Fill (2 ,∞)), Zeros {Int} (∞), Ones {Int} (∞))
131
131
recurrencecoefficients (C:: ChebyshevU ) = (Fill (2 ,∞), Zeros {Int} (∞), Ones {Int} (∞))
132
132
@@ -226,7 +226,7 @@ function \(A::ChebyshevT, B::Legendre)
226
226
(iseven (k) == iseven (j) && j ≥ k) || return zero (T)
227
227
k == 1 && return Λ (convert (T,j- 1 )/ 2 )^ 2 / π
228
228
2 / π * Λ (convert (T,j- k)/ 2 ) * Λ (convert (T,k+ j- 2 )/ 2 )
229
- end , 1 : ∞, ( 1 : ∞)' ))
229
+ end , convert (AbstractVector{T}, 1 : ∞), convert (AbstractVector{T}, 1 : ∞)' ))
230
230
end
231
231
232
232
\ (A:: AbstractJacobi , B:: Chebyshev ) = ApplyArray (inv,B \ A)
277
277
# ###
278
278
279
279
broadcastbasis (:: typeof (+ ), :: ChebyshevT , U:: ChebyshevU ) = U
280
- broadcastbasis (:: typeof (+ ), U:: ChebyshevU , :: ChebyshevT ) = U
280
+ broadcastbasis (:: typeof (+ ), U:: ChebyshevU , :: ChebyshevT ) = U
0 commit comments