From 08402f09f5d06e49f470c89bd9763d47a5db5984 Mon Sep 17 00:00:00 2001 From: Daniel VandenHeuvel <95613936+DanielVandH@users.noreply.github.com> Date: Sun, 8 Dec 2024 19:34:42 +0000 Subject: [PATCH] Expand on the definitions --- Project.toml | 2 +- docs/src/index.md | 12 ++++++------ 2 files changed, 7 insertions(+), 7 deletions(-) diff --git a/Project.toml b/Project.toml index ec6119b..b66c5c2 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "ClassicalOrthogonalPolynomials" uuid = "b30e2e7b-c4ee-47da-9d5f-2c5c27239acd" authors = ["Sheehan Olver "] -version = "0.14.0" +version = "0.14.1" [deps] ArrayLayouts = "4c555306-a7a7-4459-81d9-ec55ddd5c99a" diff --git a/docs/src/index.md b/docs/src/index.md index 6236314..4081025 100644 --- a/docs/src/index.md +++ b/docs/src/index.md @@ -10,12 +10,12 @@ CurrentModule = ClassicalOrthogonalPolynomials We follow the [Digital Library of Mathematical Functions](https://dlmf.nist.gov/18.3), which defines the following classical orthogonal polynomials: -1. Legendre: `P_n(x)` -2. Chebyshev (1st kind, 2nd kind): `T_n(x)`, `U_n(x)` -3. Ultraspherical: `C_n^{(λ)}(x)` -4. Jacobi: `P_n^{(a,b)}(x)` -5. Laguerre: `L_n^{(α)}(x)` -6. Hermite: `H_n(x)` +1. Legendre: $P_n(x)$, defined over $[-1, 1]$ with weight $w(x) = 1$. +2. Chebyshev (1st kind, 2nd kind): $T_n(x)$ and $U_n(x)$, defined over $[-1, 1]$ with weights $w(x) = 1/\sqrt{1-x^2}$ and $w(x) = \sqrt{1-x^2}$, respectively. +3. Ultraspherical: $C_n^{(\lambda)}(x)$, defined over $[-1, 1]$ with weight $w(x) = (1-x^2)^{\lambda-1/2}$. +4. Jacobi: $P_n^{(a,b)}(x)$, defined over $[-1, 1]$ with weight $w(x) = (1-x)^a(1+x)^b$. +5. Laguerre: $L_n^{(\alpha)}(x)$, defined over $[0, ∞)$ with weight $w(x) = x^\alpha \mathrm{e}^{-x}$. +6. Hermite: $H_n(x)$, defined over $(-∞, ∞)$ with weight $w(x) = \mathrm{e}^{-x^2}$. ## Evaluation