@@ -90,6 +90,8 @@ BivariateGramMatrix(W::WT, X::XT, Y::YT) where {T, WT <: AbstractMatrix{T}, XT <
90
90
@inline blockbandwidths (G:: BivariateGramMatrix ) = blockbandwidths (G. W)
91
91
@inline subblockbandwidths (G:: BivariateGramMatrix ) = subblockbandwidths (G. W)
92
92
@inline MemoryLayout (G:: BivariateGramMatrix ) = MemoryLayout (G. W)
93
+ @inline symmetricdata (G:: BivariateGramMatrix ) = symmetricdata (G. W)
94
+ @inline symmetricuplo (G:: BivariateGramMatrix ) = symmetricuplo (G. W)
93
95
@inline blockrowsupport (G:: BivariateGramMatrix , j) = blockrowsupport (MemoryLayout (G), G. W, j)
94
96
@inline blockcolsupport (G:: BivariateGramMatrix , j) = blockcolsupport (MemoryLayout (G), G. W, j)
95
97
@@ -101,7 +103,7 @@ function BivariateGramMatrix(μ::AbstractBlockVector{T}, X::XT, Y::YT, p0::T) wh
101
103
@assert blockbandwidths (X) == blockbandwidths (Y) == (1 , 1 )
102
104
@assert subblockbandwidths (X) == (0 , 0 )
103
105
@assert subblockbandwidths (Y) == (1 , 1 )
104
- W = BlockMatrix {T} (undef, 1 : N, 1 : N)
106
+ W = BlockedMatrix {T} (undef, 1 : N, 1 : N)
105
107
if n > 0
106
108
for m in 1 : N
107
109
W[Block (m, 1 )] = p0* μ[Block (m, 1 )]
@@ -119,7 +121,7 @@ function BivariateGramMatrix(μ::AbstractBlockVector{T}, X::XT, Y::YT, p0::T) wh
119
121
end
120
122
symmetrize_block! (view (W, Block (n, n)))
121
123
end
122
- WN = BlockMatrix {T} (undef, 1 : n, 1 : n)
124
+ WN = BlockedMatrix {T} (undef, 1 : n, 1 : n)
123
125
for j in 1 : n
124
126
for k in j: n
125
127
WN[Block (k, j)] = viewblock (W, Block (k, j))
0 commit comments