You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[1] D. Ruiz—Antolín and A. Townsend, [A nonuniform fast Fourier transform based on low rank approximation](https://doi.org/10.1137/17M1134822), *SIAM J. Sci. Comput.*, **40**:A529–A547, 2018.
164
164
165
-
[2]T. S. Gutleb, S. Olver and R. M. Slevinsky, [Polynomial and rational measure modifications of orthogonal polynomials via infinite-dimensional banded matrix factorizations](https://arxiv.org/abs/2302.08448), arXiv:2302.08448, 2023.
165
+
[2]K. Gumerov, S. Rigg, and R. M. Slevinsky, [Fast measure modification of orthogonal polynomials via matrices with displacement structure](https://arxiv.org/abs/2412.17663), arXiv:2412.17663, 2024.
166
166
167
-
[3] S. Olver, R. M. Slevinsky, and A. Townsend, [Fast algorithms using orthogonal polynomials](https://doi.org/10.1017/S0962492920000045), *Acta Numerica*, **29**:573—699, 2020.
167
+
[3]T. S. Gutleb, S. Olver and R. M. Slevinsky, [Polynomial and rational measure modifications of orthogonal polynomials via infinite-dimensional banded matrix factorizations](https://arxiv.org/abs/2302.08448), arXiv:2302.08448, 2023.
168
168
169
-
[4]R. M. Slevinsky, [Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series](https://doi.org/10.1016/j.acha.2017.11.001), *Appl. Comput. Harmon. Anal.*, **47**:585—606, 2019.
169
+
[4]S. Olver, R. M. Slevinsky, and A. Townsend, [Fast algorithms using orthogonal polynomials](https://doi.org/10.1017/S0962492920000045), *Acta Numerica*, **29**:573—699, 2020.
170
170
171
-
[5] R. M. Slevinsky, [Conquering the pre-computation in two-dimensional harmonic polynomial transforms](https://arxiv.org/abs/1711.07866), arXiv:1711.07866, 2017.
171
+
[5] R. M. Slevinsky, [Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series](https://doi.org/10.1016/j.acha.2017.11.001), *Appl. Comput. Harmon. Anal.*, **47**:585—606, 2019.
172
+
173
+
[6] R. M. Slevinsky, [Conquering the pre-computation in two-dimensional harmonic polynomial transforms](https://arxiv.org/abs/1711.07866), arXiv:1711.07866, 2017.
functionGramMatrix{T, WT, XT}(W::WT, X::XT) where {T, WT, XT}
33
-
ifsize(W) ≠size(X)
34
-
throw(ArgumentError("Cannot construct a GramMatrix with W and X of different sizes."))
35
-
end
36
-
if!issymmetric(W)
37
-
throw(ArgumentError("Cannot construct a GramMatrix with a nonsymmetric W."))
38
-
end
39
-
ifbandwidths(X) ≠ (1, 1)
40
-
throw(ArgumentError("Cannot construct a GramMatrix with a nontridiagonal X."))
41
-
end
42
-
new{T, WT, XT}(W, X)
43
-
end
44
-
end
45
45
46
+
See also [`ChebyshevGramMatrix`](@ref) for a special case.
47
+
48
+
> K. Gumerov, S. Rigg, and R. M. Slevinsky, [Fast measure modification of orthogonal polynomials via matrices with displacement structure](https://arxiv.org/abs/2412.17663), arXiv:2412.17663, 2024.
0 commit comments