@@ -55,8 +55,8 @@ GramMatrix(W::WT, X::XT) where {T, WT <: AbstractMatrix{T}, XT <: AbstractMatrix
55
55
56
56
Construct a GramMatrix from modified orthogonal polynomial moments and the multiplication operator.
57
57
In the standard (classical) normalization, ``p_0(x) = 1``, so that the moments
58
- ``\\ mu_n = ⟨ p_{n-1}, 1⟩`` are in fact the first column of the Gram matrix.
59
- The recurrence is built from ``X^ \\ top W = WX``.
58
+ ``µ_n = ⟨ p_{n-1}, 1⟩`` are in fact the first column of the Gram matrix.
59
+ The recurrence is built from ``XᵀW = WX``.
60
60
"""
61
61
GramMatrix (μ:: AbstractVector{T} , X:: XT ) where {T, XT <: AbstractMatrix{T} } = GramMatrix (μ, X, one (T))
62
62
function GramMatrix (μ:: AbstractVector{T} , X:: XT , p0:: T ) where {T, XT <: AbstractMatrix{T} }
@@ -221,12 +221,12 @@ end
221
221
222
222
Construct a Chebyshev--Gram matrix of size `(length(μ)+1)÷2` with entries:
223
223
```math
224
- W_{i,j} = \\ frac{\\ mu_ {|i-j|+1} +\\ mu_ {i+j-1}}{2}.
224
+ W_{i,j} = \\ frac{µ_ {|i-j|+1} +µ_ {i+j-1}}{2}.
225
225
```
226
226
Due to the linearization of a product of two first-kind Chebyshev polynomials,
227
227
the Chebyshev--Gram matrix can be constructed from modified Chebyshev moments:
228
228
```math
229
- \\ mu_ {n} = ⟨ T_{n-1}, 1⟩.
229
+ µ_ {n} = ⟨ T_{n-1}, 1⟩.
230
230
```
231
231
Specialized construction and Cholesky factorization is given for this type.
232
232
0 commit comments