@@ -539,10 +539,14 @@ Compute Jacobi expansion coefficients in ``P_n^{(\\alpha+1,\\alpha+1)}(x)`` give
539
539
function incrementαβ! (c:: AbstractVector ,α,β)
540
540
@assert α == β
541
541
N = length (c)
542
- N > 2 && (c[1 ] -= (α+ 2 )/ (4 α+ 10 )* c[3 ])
543
- @inbounds for i= 2 : N- 2 c[i] = (2 α+ i)* (2 α+ i+ 1 )/ (2 α+ 2 i- 1 )/ (2 α+ 2 i)* c[i] - (α+ i+ 1 )/ (4 α+ 4 i+ 6 )* c[i+ 2 ] end
544
- N > 1 && (c[N- 1 ] *= (2 α+ N- 1 )* (2 α+ N)/ (2 α+ 2 N- 3 )/ (2 α+ 2 N- 2 ))
545
- N > 0 && (c[N] *= (2 α+ N)* (2 α+ N+ 1 )/ (2 α+ 2 N- 1 )/ (2 α+ 2 N))
542
+ if N == 2
543
+ c[2 ] *= (2 α+ 2 )/ (2 α+ 4 )
544
+ elseif N > 2
545
+ c[1 ] -= (α+ 2 )/ (4 α+ 10 )* c[3 ]
546
+ @inbounds for i= 2 : N- 2 c[i] = (2 α+ i)* (2 α+ i+ 1 )/ (2 α+ 2 i- 1 )/ (2 α+ 2 i)* c[i] - (α+ i+ 1 )/ (4 α+ 4 i+ 6 )* c[i+ 2 ] end
547
+ c[N- 1 ] *= (2 α+ N- 1 )* (2 α+ N)/ (2 α+ 2 N- 3 )/ (2 α+ 2 N- 2 )
548
+ c[N] *= (2 α+ N)* (2 α+ N+ 1 )/ (2 α+ 2 N- 1 )/ (2 α+ 2 N)
549
+ end
546
550
c
547
551
end
548
552
@@ -574,10 +578,14 @@ Compute Jacobi expansion coefficients in ``P_n^{(\\alpha-1,\\alpha-1)}(x)`` give
574
578
function decrementαβ! (c:: AbstractVector ,α,β)
575
579
@assert α == β
576
580
N = length (c)
577
- N > 0 && (c[N] *= (2 α+ 2 N- 3 )* (2 α+ 2 N- 2 )/ (2 α+ N- 2 )/ (2 α+ N- 1 ))
578
- N > 1 && (c[N- 1 ] *= (2 α+ 2 N- 5 )* (2 α+ 2 N- 4 )/ (2 α+ N- 3 )/ (2 α+ N- 2 ))
579
- @inbounds for i= N- 2 : - 1 : 2 c[i] = (2 α+ 2 i- 3 )* (2 α+ 2 i- 2 )/ (2 α+ i- 2 )/ (2 α+ i- 1 )* (c[i] + (α+ i)/ (4 α+ 4 i+ 2 )* c[i+ 2 ]) end
580
- N > 2 && (c[1 ] += (α+ 1 )/ (4 α+ 6 )* c[3 ])
581
+ if N == 2
582
+ c[2 ] *= (2 α+ 2 )/ (2 α)
583
+ elseif N > 2
584
+ c[N] *= (2 α+ 2 N- 3 )* (2 α+ 2 N- 2 )/ (2 α+ N- 2 )/ (2 α+ N- 1 )
585
+ c[N- 1 ] *= (2 α+ 2 N- 5 )* (2 α+ 2 N- 4 )/ (2 α+ N- 3 )/ (2 α+ N- 2 )
586
+ @inbounds for i= N- 2 : - 1 : 2 c[i] = (2 α+ 2 i- 3 )* (2 α+ 2 i- 2 )/ (2 α+ i- 2 )/ (2 α+ i- 1 )* (c[i] + (α+ i)/ (4 α+ 4 i+ 2 )* c[i+ 2 ]) end
587
+ c[1 ] += (α+ 1 )/ (4 α+ 6 )* c[3 ]
588
+ end
581
589
c
582
590
end
583
591
0 commit comments