|
| 1 | +# FastTransforms |
| 2 | + |
| 3 | +## Exported |
| 4 | + |
| 5 | +--- |
| 6 | + |
| 7 | +<a id="method__cjt.1" class="lexicon_definition"></a> |
| 8 | +#### cjt(c, α, β) [¶](#method__cjt.1) |
| 9 | +Computes the Chebyshev expansion coefficients |
| 10 | +given the Jacobi expansion coefficients ``c`` with parameters ``α`` and ``β``. |
| 11 | + |
| 12 | +See also [`icjt`](#method__icjt.1) and [`jjt`](#method__jjt.1). |
| 13 | + |
| 14 | + |
| 15 | +*source:* |
| 16 | +[FastTransforms/src/cjt.jl:127](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/cjt.jl#L127) |
| 17 | + |
| 18 | +--- |
| 19 | + |
| 20 | +<a id="method__gaunt.1" class="lexicon_definition"></a> |
| 21 | +#### gaunt(m::Int64, n::Int64, μ::Int64, ν::Int64) [¶](#method__gaunt.1) |
| 22 | +Calculates the Gaunt coefficients in 64-bit floating-point arithmetic. |
| 23 | + |
| 24 | + |
| 25 | +*source:* |
| 26 | +[FastTransforms/src/gaunt.jl:24](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/gaunt.jl#L24) |
| 27 | + |
| 28 | +--- |
| 29 | + |
| 30 | +<a id="method__gaunt.2" class="lexicon_definition"></a> |
| 31 | +#### gaunt{T}(::Type{T}, m::Int64, n::Int64, μ::Int64, ν::Int64) [¶](#method__gaunt.2) |
| 32 | +Calculates the Gaunt coefficients, defined by: |
| 33 | + |
| 34 | + a(m,n,μ,ν,q) = (2(n+ν-2q)+1)/2 (n+ν-2q-m-μ)!/(n+ν-2q+m+μ)! ∫₋₁⁺¹ P_m^n(x) P_ν^μ(x) P_{n+ν-2q}^{m+μ}(x) dx. |
| 35 | + |
| 36 | +or defined by: |
| 37 | + |
| 38 | + P_n^m(x) P_ν^μ(x) = ∑_{q=0}^{q_{max}} a(m,n,μ,ν,q) P_{n+ν-2q}^{m+μ}(x) |
| 39 | + |
| 40 | +This is a Julia implementation of the stable recurrence described in: |
| 41 | + |
| 42 | + Y.-l. Xu, "Fast evaluation of Gaunt coefficients: recursive approach", J. Comp. Appl. Math., 85:53–65, 1997. |
| 43 | + |
| 44 | + |
| 45 | +*source:* |
| 46 | +[FastTransforms/src/gaunt.jl:14](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/gaunt.jl#L14) |
| 47 | + |
| 48 | +--- |
| 49 | + |
| 50 | +<a id="method__icjt.1" class="lexicon_definition"></a> |
| 51 | +#### icjt(c, α, β) [¶](#method__icjt.1) |
| 52 | +Computes the Jacobi expansion coefficients with parameters ``α`` and ``β`` |
| 53 | +given the Chebyshev expansion coefficients ``c``. |
| 54 | + |
| 55 | +See also [`cjt`](#method__cjt.1) and [`jjt`](#method__jjt.1). |
| 56 | + |
| 57 | + |
| 58 | +*source:* |
| 59 | +[FastTransforms/src/cjt.jl:135](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/cjt.jl#L135) |
| 60 | + |
| 61 | +--- |
| 62 | + |
| 63 | +<a id="method__jjt.1" class="lexicon_definition"></a> |
| 64 | +#### jjt(c, α, β, γ, δ) [¶](#method__jjt.1) |
| 65 | +Computes the Jacobi expansion coefficients with parameters ``γ`` and ``δ`` |
| 66 | +given the Jacobi expansion coefficients ``c`` with parameters ``α`` and ``β``. |
| 67 | + |
| 68 | +See also [`cjt`](#method__cjt.1) and [`icjt`](#method__icjt.1). |
| 69 | + |
| 70 | + |
| 71 | +*source:* |
| 72 | +[FastTransforms/src/cjt.jl:143](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/cjt.jl#L143) |
| 73 | + |
| 74 | +--- |
| 75 | + |
| 76 | +<a id="method__plan_cjt.1" class="lexicon_definition"></a> |
| 77 | +#### plan_cjt(c::AbstractArray{T, 1}, α, β) [¶](#method__plan_cjt.1) |
| 78 | +Pre-plan optimized DCT-I and DST-I plans and pre-allocate the necessary |
| 79 | +arrays, normalization constants, and recurrence coefficients for a forward Chebyshev—Jacobi transform. |
| 80 | + |
| 81 | +``c`` is the vector of coefficients; and, |
| 82 | + |
| 83 | +``α`` and ``β`` are the Jacobi parameters. |
| 84 | + |
| 85 | +Optionally: |
| 86 | + |
| 87 | +``M`` determines the number of terms in Hahn's asymptotic expansion. |
| 88 | + |
| 89 | + |
| 90 | +*source:* |
| 91 | +[FastTransforms/src/cjt.jl:157](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/cjt.jl#L157) |
| 92 | + |
| 93 | +--- |
| 94 | + |
| 95 | +<a id="method__plan_icjt.1" class="lexicon_definition"></a> |
| 96 | +#### plan_icjt(c::AbstractArray{T, 1}, α, β) [¶](#method__plan_icjt.1) |
| 97 | +Pre-plan optimized DCT-I and DST-I plans and pre-allocate the necessary |
| 98 | +arrays, normalization constants, and recurrence coefficients for an inverse Chebyshev—Jacobi transform. |
| 99 | + |
| 100 | +``c`` is the vector of coefficients; and, |
| 101 | + |
| 102 | +``α`` and ``β`` are the Jacobi parameters. |
| 103 | + |
| 104 | +Optionally: |
| 105 | + |
| 106 | +``M`` determines the number of terms in Hahn's asymptotic expansion. |
| 107 | + |
| 108 | + |
| 109 | +*source:* |
| 110 | +[FastTransforms/src/cjt.jl:176](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/cjt.jl#L176) |
| 111 | + |
| 112 | +## Internal |
| 113 | + |
| 114 | +--- |
| 115 | + |
| 116 | +<a id="method__chebyshevjacobimoments1.1" class="lexicon_definition"></a> |
| 117 | +#### chebyshevjacobimoments1{T<:AbstractFloat}(N::Int64, α::T<:AbstractFloat, β::T<:AbstractFloat) [¶](#method__chebyshevjacobimoments1.1) |
| 118 | +Modified Chebyshev moments of the first kind with respect to the Jacobi weight: |
| 119 | + |
| 120 | + ∫₋₁⁺¹ T_n(x) (1-x)^α(1+x)^β dx. |
| 121 | + |
| 122 | + |
| 123 | + |
| 124 | +*source:* |
| 125 | +[FastTransforms/src/specialfunctions.jl:362](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/specialfunctions.jl#L362) |
| 126 | + |
| 127 | +--- |
| 128 | + |
| 129 | +<a id="method__chebyshevjacobimoments2.1" class="lexicon_definition"></a> |
| 130 | +#### chebyshevjacobimoments2{T<:AbstractFloat}(N::Int64, α::T<:AbstractFloat, β::T<:AbstractFloat) [¶](#method__chebyshevjacobimoments2.1) |
| 131 | +Modified Chebyshev moments of the second kind with respect to the Jacobi weight: |
| 132 | + |
| 133 | + ∫₋₁⁺¹ U_n(x) (1-x)^α(1+x)^β dx. |
| 134 | + |
| 135 | + |
| 136 | + |
| 137 | +*source:* |
| 138 | +[FastTransforms/src/specialfunctions.jl:380](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/specialfunctions.jl#L380) |
| 139 | + |
| 140 | +--- |
| 141 | + |
| 142 | +<a id="method__clenshawcurtisweights.1" class="lexicon_definition"></a> |
| 143 | +#### clenshawcurtisweights{T<:AbstractFloat}(N::Int64, α::T<:AbstractFloat, β::T<:AbstractFloat) [¶](#method__clenshawcurtisweights.1) |
| 144 | +Compute weights of the Clenshaw—Curtis quadrature rule with a Jacobi weight. |
| 145 | + |
| 146 | + |
| 147 | +*source:* |
| 148 | +[FastTransforms/src/clenshawcurtis.jl:12](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/clenshawcurtis.jl#L12) |
| 149 | + |
| 150 | +--- |
| 151 | + |
| 152 | +<a id="method__clenshawcurtis.1" class="lexicon_definition"></a> |
| 153 | +#### clenshawcurtis{T<:AbstractFloat}(N::Int64, α::T<:AbstractFloat, β::T<:AbstractFloat) [¶](#method__clenshawcurtis.1) |
| 154 | +Compute nodes and weights of the Clenshaw—Curtis quadrature rule with a Jacobi weight. |
| 155 | + |
| 156 | + |
| 157 | +*source:* |
| 158 | +[FastTransforms/src/clenshawcurtis.jl:6](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/clenshawcurtis.jl#L6) |
| 159 | + |
| 160 | +--- |
| 161 | + |
| 162 | +<a id="method__fejer1.1" class="lexicon_definition"></a> |
| 163 | +#### fejer1{T<:AbstractFloat}(N::Int64, α::T<:AbstractFloat, β::T<:AbstractFloat) [¶](#method__fejer1.1) |
| 164 | +Compute nodes and weights of Fejer's first quadrature rule with a Jacobi weight. |
| 165 | + |
| 166 | + |
| 167 | +*source:* |
| 168 | +[FastTransforms/src/fejer.jl:7](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/fejer.jl#L7) |
| 169 | + |
| 170 | +--- |
| 171 | + |
| 172 | +<a id="method__fejer2.1" class="lexicon_definition"></a> |
| 173 | +#### fejer2{T<:AbstractFloat}(N::Int64, α::T<:AbstractFloat, β::T<:AbstractFloat) [¶](#method__fejer2.1) |
| 174 | +Compute nodes and weights of Fejer's second quadrature rule with a Jacobi weight. |
| 175 | + |
| 176 | + |
| 177 | +*source:* |
| 178 | +[FastTransforms/src/fejer.jl:12](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/fejer.jl#L12) |
| 179 | + |
| 180 | +--- |
| 181 | + |
| 182 | +<a id="method__fejerweights1.1" class="lexicon_definition"></a> |
| 183 | +#### fejerweights1{T<:AbstractFloat}(N::Int64, α::T<:AbstractFloat, β::T<:AbstractFloat) [¶](#method__fejerweights1.1) |
| 184 | +Compute weights of Fejer's first quadrature rule with a Jacobi weight. |
| 185 | + |
| 186 | + |
| 187 | +*source:* |
| 188 | +[FastTransforms/src/fejer.jl:21](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/fejer.jl#L21) |
| 189 | + |
| 190 | +--- |
| 191 | + |
| 192 | +<a id="method__fejerweights2.1" class="lexicon_definition"></a> |
| 193 | +#### fejerweights2{T<:AbstractFloat}(N::Int64, α::T<:AbstractFloat, β::T<:AbstractFloat) [¶](#method__fejerweights2.1) |
| 194 | +Compute weights of Fejer's second quadrature rule with a Jacobi weight. |
| 195 | + |
| 196 | + |
| 197 | +*source:* |
| 198 | +[FastTransforms/src/fejer.jl:26](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/fejer.jl#L26) |
| 199 | + |
| 200 | +--- |
| 201 | + |
| 202 | +<a id="method__pochhammer.1" class="lexicon_definition"></a> |
| 203 | +#### pochhammer(x::Number, n::Integer) [¶](#method__pochhammer.1) |
| 204 | +Pochhammer symbol (x)_n = Γ(x+n)/Γ(x) for the rising factorial. |
| 205 | + |
| 206 | + |
| 207 | +*source:* |
| 208 | +[FastTransforms/src/specialfunctions.jl:13](https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b1dce339ed19119766d44b5ec44d954932da58d3/src/specialfunctions.jl#L13) |
| 209 | + |
0 commit comments