@@ -13,7 +13,7 @@ See also [`icjt`](#method__icjt.1) and [`jjt`](#method__jjt.1).
13
13
14
14
15
15
* source:*
16
- [ FastTransforms/src/cjt.jl:121] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/cjt.jl#L121 )
16
+ [ FastTransforms/src/cjt.jl:121] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/cjt.jl#L121 )
17
17
18
18
---
19
19
@@ -23,7 +23,7 @@ Calculates the Gaunt coefficients in 64-bit floating-point arithmetic.
23
23
24
24
25
25
* source:*
26
- [ FastTransforms/src/gaunt.jl:24] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/gaunt.jl#L24 )
26
+ [ FastTransforms/src/gaunt.jl:24] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/gaunt.jl#L24 )
27
27
28
28
---
29
29
@@ -43,7 +43,7 @@ This is a Julia implementation of the stable recurrence described in:
43
43
44
44
45
45
* source:*
46
- [ FastTransforms/src/gaunt.jl:14] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/gaunt.jl#L14 )
46
+ [ FastTransforms/src/gaunt.jl:14] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/gaunt.jl#L14 )
47
47
48
48
---
49
49
@@ -56,7 +56,7 @@ See also [`cjt`](#method__cjt.1) and [`jjt`](#method__jjt.1).
56
56
57
57
58
58
* source:*
59
- [ FastTransforms/src/cjt.jl:129] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/cjt.jl#L129 )
59
+ [ FastTransforms/src/cjt.jl:129] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/cjt.jl#L129 )
60
60
61
61
---
62
62
@@ -69,7 +69,7 @@ See also [`cjt`](#method__cjt.1) and [`icjt`](#method__icjt.1).
69
69
70
70
71
71
* source:*
72
- [ FastTransforms/src/cjt.jl:137] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/cjt.jl#L137 )
72
+ [ FastTransforms/src/cjt.jl:137] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/cjt.jl#L137 )
73
73
74
74
---
75
75
@@ -88,7 +88,7 @@ Optionally:
88
88
89
89
90
90
* source:*
91
- [ FastTransforms/src/cjt.jl:158] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/cjt.jl#L158 )
91
+ [ FastTransforms/src/cjt.jl:158] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/cjt.jl#L158 )
92
92
93
93
---
94
94
@@ -107,7 +107,7 @@ Optionally:
107
107
108
108
109
109
* source:*
110
- [ FastTransforms/src/cjt.jl:172] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/cjt.jl#L172 )
110
+ [ FastTransforms/src/cjt.jl:172] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/cjt.jl#L172 )
111
111
112
112
## Internal
113
113
@@ -122,7 +122,7 @@ Modified Chebyshev moments of the first kind with respect to the Jacobi weight:
122
122
123
123
124
124
* source:*
125
- [ FastTransforms/src/specialfunctions.jl:399] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L399 )
125
+ [ FastTransforms/src/specialfunctions.jl:399] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L399 )
126
126
127
127
---
128
128
@@ -135,7 +135,7 @@ Modified Chebyshev moments of the second kind with respect to the Jacobi weight:
135
135
136
136
137
137
* source:*
138
- [ FastTransforms/src/specialfunctions.jl:417] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L417 )
138
+ [ FastTransforms/src/specialfunctions.jl:417] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L417 )
139
139
140
140
---
141
141
@@ -145,7 +145,7 @@ Compute weights of the Clenshaw—Curtis quadrature rule with a Jacobi weight.
145
145
146
146
147
147
* source:*
148
- [ FastTransforms/src/clenshawcurtis.jl:12] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/clenshawcurtis.jl#L12 )
148
+ [ FastTransforms/src/clenshawcurtis.jl:12] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/clenshawcurtis.jl#L12 )
149
149
150
150
---
151
151
@@ -155,7 +155,7 @@ Compute nodes and weights of the Clenshaw—Curtis quadrature rule with a Jacobi
155
155
156
156
157
157
* source:*
158
- [ FastTransforms/src/clenshawcurtis.jl:6] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/clenshawcurtis.jl#L6 )
158
+ [ FastTransforms/src/clenshawcurtis.jl:6] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/clenshawcurtis.jl#L6 )
159
159
160
160
---
161
161
@@ -165,7 +165,7 @@ Compute Jacobi expansion coefficients in Pₙ^(α-1,β) given Jacobi expansion c
165
165
166
166
167
167
* source:*
168
- [ FastTransforms/src/specialfunctions.jl:467] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L467 )
168
+ [ FastTransforms/src/specialfunctions.jl:467] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L467 )
169
169
170
170
---
171
171
@@ -175,7 +175,7 @@ Compute Jacobi expansion coefficients in Pₙ^(α-1,α-1) given Jacobi expansion
175
175
176
176
177
177
* source:*
178
- [ FastTransforms/src/specialfunctions.jl:489] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L489 )
178
+ [ FastTransforms/src/specialfunctions.jl:489] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L489 )
179
179
180
180
---
181
181
@@ -185,7 +185,7 @@ Compute Jacobi expansion coefficients in Pₙ^(α,β-1) given Jacobi expansion c
185
185
186
186
187
187
* source:*
188
- [ FastTransforms/src/specialfunctions.jl:478] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L478 )
188
+ [ FastTransforms/src/specialfunctions.jl:478] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L478 )
189
189
190
190
---
191
191
@@ -195,7 +195,7 @@ Compute nodes and weights of Fejer's first quadrature rule with a Jacobi weight.
195
195
196
196
197
197
* source:*
198
- [ FastTransforms/src/fejer.jl:7] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/fejer.jl#L7 )
198
+ [ FastTransforms/src/fejer.jl:7] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/fejer.jl#L7 )
199
199
200
200
---
201
201
@@ -205,7 +205,7 @@ Compute nodes and weights of Fejer's second quadrature rule with a Jacobi weight
205
205
206
206
207
207
* source:*
208
- [ FastTransforms/src/fejer.jl:12] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/fejer.jl#L12 )
208
+ [ FastTransforms/src/fejer.jl:12] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/fejer.jl#L12 )
209
209
210
210
---
211
211
@@ -215,7 +215,7 @@ Compute weights of Fejer's first quadrature rule with a Jacobi weight.
215
215
216
216
217
217
* source:*
218
- [ FastTransforms/src/fejer.jl:21] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/fejer.jl#L21 )
218
+ [ FastTransforms/src/fejer.jl:21] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/fejer.jl#L21 )
219
219
220
220
---
221
221
@@ -225,7 +225,7 @@ Compute weights of Fejer's second quadrature rule with a Jacobi weight.
225
225
226
226
227
227
* source:*
228
- [ FastTransforms/src/fejer.jl:26] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/fejer.jl#L26 )
228
+ [ FastTransforms/src/fejer.jl:26] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/fejer.jl#L26 )
229
229
230
230
---
231
231
@@ -235,7 +235,7 @@ Compute a typed 0.5.
235
235
236
236
237
237
* source:*
238
- [ FastTransforms/src/specialfunctions.jl:12] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L12 )
238
+ [ FastTransforms/src/specialfunctions.jl:12] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L12 )
239
239
240
240
---
241
241
@@ -245,7 +245,7 @@ Compute Jacobi expansion coefficients in Pₙ^(α+1,β) given Jacobi expansion c
245
245
246
246
247
247
* source:*
248
- [ FastTransforms/src/specialfunctions.jl:432] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L432 )
248
+ [ FastTransforms/src/specialfunctions.jl:432] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L432 )
249
249
250
250
---
251
251
@@ -255,7 +255,7 @@ Compute Jacobi expansion coefficients in Pₙ^(α+1,α+1) given Jacobi expansion
255
255
256
256
257
257
* source:*
258
- [ FastTransforms/src/specialfunctions.jl:454] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L454 )
258
+ [ FastTransforms/src/specialfunctions.jl:454] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L454 )
259
259
260
260
---
261
261
@@ -265,7 +265,7 @@ Compute Jacobi expansion coefficients in Pₙ^(α,β+1) given Jacobi expansion c
265
265
266
266
267
267
* source:*
268
- [ FastTransforms/src/specialfunctions.jl:443] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L443 )
268
+ [ FastTransforms/src/specialfunctions.jl:443] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L443 )
269
269
270
270
---
271
271
@@ -275,7 +275,7 @@ Pochhammer symbol (x)_n = Γ(x+n)/Γ(x) for the rising factorial.
275
275
276
276
277
277
* source:*
278
- [ FastTransforms/src/specialfunctions.jl:32] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L32 )
278
+ [ FastTransforms/src/specialfunctions.jl:32] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L32 )
279
279
280
280
---
281
281
@@ -285,7 +285,7 @@ Stirling series for Γ(z).
285
285
286
286
287
287
* source:*
288
- [ FastTransforms/src/specialfunctions.jl:63] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L63 )
288
+ [ FastTransforms/src/specialfunctions.jl:63] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L63 )
289
289
290
290
---
291
291
@@ -295,7 +295,7 @@ Compute a typed 2.
295
295
296
296
297
297
* source:*
298
- [ FastTransforms/src/specialfunctions.jl:20] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L20 )
298
+ [ FastTransforms/src/specialfunctions.jl:20] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L20 )
299
299
300
300
---
301
301
@@ -307,7 +307,7 @@ For 64-bit floating-point arithmetic, the Lambda function uses the asymptotic se
307
307
308
308
309
309
* source:*
310
- [ FastTransforms/src/specialfunctions.jl:147] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L147 )
310
+ [ FastTransforms/src/specialfunctions.jl:147] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L147 )
311
311
312
312
---
313
313
@@ -317,7 +317,7 @@ The Lambda function Λ(z) = Γ(z+½)/Γ(z+1) for the ratio of gamma functions.
317
317
318
318
319
319
* source:*
320
- [ FastTransforms/src/specialfunctions.jl:141] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L141 )
320
+ [ FastTransforms/src/specialfunctions.jl:141] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L141 )
321
321
322
322
---
323
323
@@ -327,7 +327,7 @@ The Lambda function Λ(z,λ₁,λ₂) = Γ(z+λ₁)/Γ(z+λ₂) for the ratio of
327
327
328
328
329
329
* source:*
330
- [ FastTransforms/src/specialfunctions.jl:160] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L160 )
330
+ [ FastTransforms/src/specialfunctions.jl:160] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L160 )
331
331
332
332
---
333
333
@@ -337,7 +337,7 @@ The Kronecker δ function.
337
337
338
338
339
339
* source:*
340
- [ FastTransforms/src/specialfunctions.jl:26] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/specialfunctions.jl#L26 )
340
+ [ FastTransforms/src/specialfunctions.jl:26] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/specialfunctions.jl#L26 )
341
341
342
342
---
343
343
@@ -351,5 +351,5 @@ where the Hankel matrix `H` is non-negative definite. This allows a Cholesky dec
351
351
352
352
353
353
* source:*
354
- [ FastTransforms/src/toeplitzhankel.jl:8] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/b6e4fdf35a2160f0d9948e6565fd69c2177f4d82 /src/toeplitzhankel.jl#L8 )
354
+ [ FastTransforms/src/toeplitzhankel.jl:8] ( https://github.com/MikaelSlevinsky/FastTransforms.jl/tree/cf090e3655e959c23556d1af681c3378ab9c3081 /src/toeplitzhankel.jl#L8 )
355
355
0 commit comments