|
| 1 | +struct ToeplitzPlusHankel{T, S, P1 <: Plan{S}, P2 <: Plan{S}} <: AbstractMatrix{T} |
| 2 | + tc::Vector{T} |
| 3 | + tr::Vector{T} |
| 4 | + h::Vector{T} |
| 5 | + th_dft::Matrix{S} |
| 6 | + tht_dft::Matrix{S} |
| 7 | + temp::Matrix{S} |
| 8 | + plan::P1 |
| 9 | + iplan::P2 |
| 10 | + size::NTuple{2, Int} |
| 11 | +end |
| 12 | + |
| 13 | +# enforces tr[1] == tc[1] |
| 14 | +function ToeplitzPlusHankel(tc::Vector{T}, tr::Vector{T}, h::Vector{T}) where T |
| 15 | + m = length(tc) |
| 16 | + n = length(tr) |
| 17 | + @assert length(h) == m+n-1 |
| 18 | + tr[1] = tc[1] |
| 19 | + mn = m+n |
| 20 | + S = promote_type(float(T), Complex{Float32}) |
| 21 | + th_dft = Matrix{S}(undef, mn, 2) |
| 22 | + copyto!(th_dft, 1, tc, 1, m) |
| 23 | + th_dft[m+1, 1] = zero(T) |
| 24 | + copyto!(th_dft, m+2, Iterators.reverse(tr), 1, n-1) |
| 25 | + copyto!(th_dft, mn+1, h, n, m) |
| 26 | + th_dft[m+1, 2] = zero(T) |
| 27 | + copyto!(th_dft, mn+m+2, h, 1, n-1) |
| 28 | + tht_dft = Matrix{S}(undef, mn, 2) |
| 29 | + copyto!(tht_dft, 1, tr, 1, n) |
| 30 | + tht_dft[n+1, 1] = zero(T) |
| 31 | + copyto!(tht_dft, n+2, Iterators.reverse(tc), 1, m-1) |
| 32 | + copyto!(tht_dft, mn+1, h, m, n) |
| 33 | + tht_dft[n+1, 2] = zero(T) |
| 34 | + copyto!(tht_dft, mn+n+2, h, 1, m-1) |
| 35 | + |
| 36 | + plan = plan_fft!(th_dft, 1) |
| 37 | + plan*th_dft |
| 38 | + plan*tht_dft |
| 39 | + temp = zeros(S, mn, 2) |
| 40 | + iplan = inv(plan) |
| 41 | + |
| 42 | + ToeplitzPlusHankel{T, S, typeof(plan), typeof(iplan)}(tc, tr, h, th_dft, tht_dft, temp, plan, iplan, (m, n)) |
| 43 | +end |
| 44 | + |
| 45 | +# A ChebyshevGramMatrix isa (symmetric positive-definite) ToeplitzPlusHankel matrix. |
| 46 | +function ToeplitzPlusHankel(G::ChebyshevGramMatrix) |
| 47 | + n = size(G, 1) |
| 48 | + ToeplitzPlusHankel(G.μ[1:n]/2, G.μ[1:n]/2, G.μ/2) |
| 49 | +end |
| 50 | + |
| 51 | +size(A::ToeplitzPlusHankel) = A.size |
| 52 | +getindex(A::ToeplitzPlusHankel, i::Integer, j::Integer) = (i ≥ j ? A.tc[i-j+1] : A.tr[j-i+1]) + A.h[i+j-1] |
| 53 | + |
| 54 | +# A view of a T+H is also T+H. |
| 55 | +function getindex(A::ToeplitzPlusHankel, ir::UnitRange{Int}, jr::UnitRange{Int}) |
| 56 | + fir, lir = first(ir), last(ir) |
| 57 | + fjr, ljr = first(jr), last(jr) |
| 58 | + if fir ≥ fjr |
| 59 | + tc = A.tc[fir-fjr+1:lir-fjr+1] |
| 60 | + tr = [A.tc[fir-fjr+1:-1:max(1, fir-ljr+1)]; A.tr[2:ljr-fir+1]] |
| 61 | + else |
| 62 | + tc = [A.tr[fjr-fir+1:-1:max(1, fjr-lir+1)]; A.tc[2:lir-fjr+1]] |
| 63 | + tr = A.tr[fjr-fir+1:ljr-fir+1] |
| 64 | + end |
| 65 | + ToeplitzPlusHankel(tc, tr, A.h[fir+fjr-1:lir+ljr-1]) |
| 66 | +end |
| 67 | + |
| 68 | + |
| 69 | +# y ← A x α + y β |
| 70 | +function mul!(y::StridedVector{T}, A::ToeplitzPlusHankel{T}, x::StridedVector{T}, α::S, β::S) where {T <: Real, S <: Real} |
| 71 | + m, n = size(A) |
| 72 | + @assert m == length(y) |
| 73 | + @assert n == length(x) |
| 74 | + mn = m+n |
| 75 | + th_dft = A.th_dft |
| 76 | + temp = A.temp |
| 77 | + plan = A.plan |
| 78 | + iplan = A.iplan |
| 79 | + |
| 80 | + copyto!(temp, 1, x, 1, n) |
| 81 | + copyto!(temp, mn+1, Iterators.reverse(x), 1, n) |
| 82 | + @inbounds for j in n+1:mn |
| 83 | + temp[j, 1] = zero(T) |
| 84 | + temp[j, 2] = zero(T) |
| 85 | + end |
| 86 | + plan*temp |
| 87 | + temp .*= th_dft |
| 88 | + iplan*temp |
| 89 | + |
| 90 | + if iszero(β) |
| 91 | + @inbounds @simd for i in 1:m |
| 92 | + y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) |
| 93 | + end |
| 94 | + else |
| 95 | + @inbounds @simd for i in 1:m |
| 96 | + y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) + β*y[i] |
| 97 | + end |
| 98 | + end |
| 99 | + return y |
| 100 | +end |
| 101 | + |
| 102 | +# y ← A' x α + y β |
| 103 | +function mul!(y::StridedVector{T}, A::Adjoint{T, <:ToeplitzPlusHankel{T}}, x::StridedVector{T}, α::S, β::S) where {T <: Real, S <: Real} |
| 104 | + m, n = size(A) |
| 105 | + @assert m == length(y) |
| 106 | + @assert n == length(x) |
| 107 | + mn = m+n |
| 108 | + AP = A.parent |
| 109 | + tht_dft = AP.tht_dft |
| 110 | + temp = AP.temp |
| 111 | + plan = AP.plan |
| 112 | + iplan = AP.iplan |
| 113 | + |
| 114 | + copyto!(temp, 1, x, 1, n) |
| 115 | + copyto!(temp, mn+1, Iterators.reverse(x), 1, n) |
| 116 | + @inbounds for j in n+1:mn |
| 117 | + temp[j, 1] = zero(T) |
| 118 | + temp[j, 2] = zero(T) |
| 119 | + end |
| 120 | + plan*temp |
| 121 | + temp .*= tht_dft |
| 122 | + iplan*temp |
| 123 | + |
| 124 | + if iszero(β) |
| 125 | + @inbounds @simd for i in 1:m |
| 126 | + y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) |
| 127 | + end |
| 128 | + else |
| 129 | + @inbounds @simd for i in 1:m |
| 130 | + y[i] = α * (real(temp[i, 1])+real(temp[i, 2])) + β*y[i] |
| 131 | + end |
| 132 | + end |
| 133 | + return y |
| 134 | +end |
| 135 | + |
| 136 | + |
| 137 | +# C ← A B α + C β |
| 138 | +function mul!(C::StridedMatrix{T}, A::ToeplitzPlusHankel{T}, B::StridedMatrix{T}, α::S, β::S) where {T <: Real, S <: Real} |
| 139 | + m, n = size(A) |
| 140 | + @assert m == size(C, 1) |
| 141 | + @assert n == size(B, 1) |
| 142 | + p = size(B, 2) |
| 143 | + if size(C, 2) != p |
| 144 | + throw(DimensionMismatch("input and output matrices must have same number of columns")) |
| 145 | + end |
| 146 | + |
| 147 | + th_dft = A.th_dft |
| 148 | + TC = promote_type(float(T), Complex{Float32}) |
| 149 | + temp = zeros(TC, m+n, 2p) |
| 150 | + plan = plan_fft!(temp, 1) |
| 151 | + |
| 152 | + for k in 1:p |
| 153 | + copyto!(view(temp, :, 2k-1), 1, view(B, :, k), 1, n) |
| 154 | + copyto!(view(temp, :, 2k), 1, Iterators.reverse(view(B, :, k)), 1, n) |
| 155 | + end |
| 156 | + plan*temp |
| 157 | + for k in 1:p |
| 158 | + vt = view(temp, :, 2k-1:2k) |
| 159 | + vt .*= th_dft |
| 160 | + end |
| 161 | + plan\temp |
| 162 | + |
| 163 | + if iszero(β) |
| 164 | + @inbounds for k in 1:p |
| 165 | + for i in 1:m |
| 166 | + C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) |
| 167 | + end |
| 168 | + end |
| 169 | + else |
| 170 | + @inbounds for k in 1:p |
| 171 | + for i in 1:m |
| 172 | + C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + β*C[i, k] |
| 173 | + end |
| 174 | + end |
| 175 | + end |
| 176 | + return C |
| 177 | +end |
| 178 | + |
| 179 | +# Morally equivalent to mul!(C', B', A', α, β)' with StridedMatrix replaced by AbstractMatrix below |
| 180 | +function mul!(C::StridedMatrix{T}, A::StridedMatrix{T}, B::ToeplitzPlusHankel{T}, α::S, β::S) where {T <: Real, S <: Real} |
| 181 | + n, m = size(B) |
| 182 | + @assert m == size(C, 2) |
| 183 | + @assert n == size(A, 2) |
| 184 | + p = size(A, 1) |
| 185 | + if size(C, 1) != p |
| 186 | + throw(DimensionMismatch("input and output matrices must have same number of rows")) |
| 187 | + end |
| 188 | + |
| 189 | + tht_dft = B.tht_dft |
| 190 | + TC = promote_type(float(T), Complex{Float32}) |
| 191 | + temp = zeros(TC, m+n, 2p) |
| 192 | + plan = plan_fft!(temp, 1) |
| 193 | + |
| 194 | + for k in 1:p |
| 195 | + copyto!(view(temp, :, 2k-1), 1, view(A, k, :), 1, n) |
| 196 | + copyto!(view(temp, :, 2k), 1, Iterators.reverse(view(A, k, :)), 1, n) |
| 197 | + end |
| 198 | + plan*temp |
| 199 | + for k in 1:p |
| 200 | + vt = view(temp, :, 2k-1:2k) |
| 201 | + vt .*= tht_dft |
| 202 | + end |
| 203 | + plan\temp |
| 204 | + |
| 205 | + if iszero(β) |
| 206 | + @inbounds for k in 1:p |
| 207 | + for i in 1:m |
| 208 | + C[k, i] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) |
| 209 | + end |
| 210 | + end |
| 211 | + else |
| 212 | + @inbounds for k in 1:p |
| 213 | + for i in 1:m |
| 214 | + C[k, i] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + β*C[k, i] |
| 215 | + end |
| 216 | + end |
| 217 | + end |
| 218 | + return C |
| 219 | +end |
| 220 | + |
| 221 | +# C ← A' B α + C β |
| 222 | +function mul!(C::StridedMatrix{T}, A::Adjoint{T, <:ToeplitzPlusHankel{T}}, B::StridedMatrix{T}, α::S, β::S) where {T <: Real, S <: Real} |
| 223 | + m, n = size(A) |
| 224 | + @assert m == size(C, 1) |
| 225 | + @assert n == size(B, 1) |
| 226 | + p = size(B, 2) |
| 227 | + if size(C, 2) != p |
| 228 | + throw(DimensionMismatch("input and output matrices must have same number of columns")) |
| 229 | + end |
| 230 | + |
| 231 | + tht_dft = A.parent.tht_dft |
| 232 | + TC = promote_type(float(T), Complex{Float32}) |
| 233 | + temp = zeros(TC, m+n, 2p) |
| 234 | + plan = plan_fft!(temp, 1) |
| 235 | + |
| 236 | + for k in 1:p |
| 237 | + copyto!(view(temp, :, 2k-1), 1, view(B, :, k), 1, n) |
| 238 | + copyto!(view(temp, :, 2k), 1, Iterators.reverse(view(B, :, k)), 1, n) |
| 239 | + end |
| 240 | + plan*temp |
| 241 | + for k in 1:p |
| 242 | + vt = view(temp, :, 2k-1:2k) |
| 243 | + vt .*= tht_dft |
| 244 | + end |
| 245 | + plan\temp |
| 246 | + |
| 247 | + if iszero(β) |
| 248 | + @inbounds for k in 1:p |
| 249 | + for i in 1:m |
| 250 | + C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) |
| 251 | + end |
| 252 | + end |
| 253 | + else |
| 254 | + @inbounds for k in 1:p |
| 255 | + for i in 1:m |
| 256 | + C[i, k] = α * (real(temp[i, 2k-1])+real(temp[i, 2k])) + β*C[i, k] |
| 257 | + end |
| 258 | + end |
| 259 | + end |
| 260 | + return C |
| 261 | +end |
| 262 | + |
| 263 | +# Estimate the Frobenius norm of the Toeplitz-plus-Hankel matrix by working with the symbols. |
| 264 | +function normest(A::ToeplitzPlusHankel{T}) where T |
| 265 | + m, n = size(A) |
| 266 | + tc = A.tc |
| 267 | + tr = A.tr |
| 268 | + h = A.h |
| 269 | + ret1 = zero(T) |
| 270 | + ret2 = zero(T) |
| 271 | + if m == min(m, n) |
| 272 | + for i = 1:m |
| 273 | + ret1 += (m+1-i)*abs2(tc[i]) |
| 274 | + end |
| 275 | + for i = 2:n-m |
| 276 | + ret1 += m*abs2(tr[i]) |
| 277 | + end |
| 278 | + for i = n-m+1:n |
| 279 | + ret1 += (n-i)*abs2(tr[i]) |
| 280 | + end |
| 281 | + for i = 1:m |
| 282 | + ret2 += i*abs2(h[i]) |
| 283 | + end |
| 284 | + for i = m+1:n |
| 285 | + ret2 += m*abs2(h[i]) |
| 286 | + end |
| 287 | + for i = n+1:m+n-1 |
| 288 | + ret2 += (m+n-i)*abs2(h[i]) |
| 289 | + end |
| 290 | + else |
| 291 | + for i = 1:n |
| 292 | + ret1 += (n+1-i)*abs2(tr[i]) |
| 293 | + end |
| 294 | + for i = 2:m-n |
| 295 | + ret1 += n*abs2(tc[i]) |
| 296 | + end |
| 297 | + for i = m-n+1:m |
| 298 | + ret1 += (m-i)*abs2(tc[i]) |
| 299 | + end |
| 300 | + for i = 1:n |
| 301 | + ret2 += i*abs2(h[i]) |
| 302 | + end |
| 303 | + for i = n+1:m |
| 304 | + ret2 += n*abs2(h[i]) |
| 305 | + end |
| 306 | + for i = m+1:m+n-1 |
| 307 | + ret2 += (m+n-i)*abs2(h[i]) |
| 308 | + end |
| 309 | + end |
| 310 | + sqrt(ret1) + sqrt(ret2) |
| 311 | +end |
| 312 | + |
| 313 | +normest(A::Symmetric{T, <: ToeplitzPlusHankel{T}}) where T = normest(parent(A)) |
| 314 | +normest(A::Hermitian{T, <: ToeplitzPlusHankel{T}}) where T = normest(parent(A)) |
| 315 | + |
| 316 | +function normest(A::ChebyshevGramMatrix{T}) where T |
| 317 | + n = size(A, 1) |
| 318 | + normest(A[1:n, 1:n]) |
| 319 | +end |
0 commit comments