|
| 1 | + |
| 2 | +function nufft1_plan{T<:AbstractFloat}( x::AbstractVector{T}, ϵ::T ) |
| 3 | +(s_vec, t_idx, gam) = FindAlgorithmicParameters( x ) |
| 4 | +K = FindK(gam, ϵ) |
| 5 | +(u, v) = constructAK(x, K) |
| 6 | +p( c ) = (u.*(fft(Diagonal(c)*v,1)[t_idx,:]))*ones(K) |
| 7 | +end |
| 8 | + |
| 9 | +function nufft2_plan{T<:AbstractFloat}( ω::AbstractVector{T}, ϵ::T ) |
| 10 | +N = size(ω, 1) |
| 11 | +(s_vec, t_idx, γ) = FindAlgorithmicParameters( ω/N ) |
| 12 | +K = FindK(γ, ϵ) |
| 13 | +(u, v) = constructAK(ω/N, K) |
| 14 | +In = speye(eltype(c), N, N) |
| 15 | +p( c ) = (v.*(N*conj(ifft(In[:,t_idx]*conj(Diagonal(c)*u),1))))*ones(K) |
| 16 | +end |
| 17 | + |
| 18 | +nufft1{T<:AbstractFloat}( c::AbstractVector, x::AbstractVector{T}, ϵ::T ) = nufft1_plan(x, ϵ)(c) |
| 19 | +nufft2{T<:AbstractFloat}( c::AbstractVector, ω::AbstractVector{T}, ϵ::T ) = nufft2_plan(ω, ϵ)(c) |
| 20 | +nuftt3{T<:AbstractFloat}( c::AbstractVector, x::AbstractVector{T}, ω::AbstractVector{T}, ϵ::T ) = nufft3_plan(x, ω, ϵ)(c) |
| 21 | + |
| 22 | +FindK{T<:AbstractFloat}(γ::T, ϵ::T) = Int( ceil(5.0*γ.*exp(lambertw(log(10.0/ϵ)./γ/7.0))) ) |
| 23 | + |
| 24 | +function FindAlgorithmicParameters{T<:AbstractFloat}( x::AbstractVector{T} ) |
| 25 | + |
| 26 | +N = size(x, 1) |
| 27 | +s_vec = round(N*x) |
| 28 | +t_idx = mod(round(Int64, N*x), N) + 1 |
| 29 | +γ = norm(N*x - s_vec, Inf) |
| 30 | + |
| 31 | +return (s_vec, t_idx, γ) |
| 32 | +end |
| 33 | + |
| 34 | +function constructAK{T<:AbstractFloat}(x::AbstractVector{T}, K::Int64) |
| 35 | +# Construct a low rank approximation, using Chebyshev expansions |
| 36 | +# for AK = exp(-2*pi*1im*(x[j]-j/N)*k): |
| 37 | + |
| 38 | +N = size(x, 1) |
| 39 | +(s_vec, t_idx, γ) = FindAlgorithmicParameters( x ) |
| 40 | +er = N*x - s_vec |
| 41 | +scl = exp( -1im*pi*er ) |
| 42 | + |
| 43 | +# Chebyshev polynomials of degree 0,...,K-1 evaluated at er/gam: |
| 44 | +TT = Diagonal(scl)*ChebyshevP(K-1, er/γ) |
| 45 | + |
| 46 | +# Chebyshev expansion coefficients: |
| 47 | +cfs = Bessel_coeffs(K, γ) |
| 48 | +u = zeros(eltype(cfs), N, K) |
| 49 | + |
| 50 | +# Construct them now: |
| 51 | +for r = 0:K-1 |
| 52 | + for j = 1:N |
| 53 | + u[j,r+1] = cfs[1,r+1]*TT[j,1] |
| 54 | + for p = (2-mod(r,2)):2:K-1 |
| 55 | + u[j,r+1] += cfs[p+1,r+1]*TT[j,p+1] |
| 56 | + end |
| 57 | + end |
| 58 | +end |
| 59 | + |
| 60 | +# rowspace vectors: |
| 61 | +v = ChebyshevP(K-1, 2.0*collect(0:N-1)/N - ones(N) ) |
| 62 | + |
| 63 | +return (u, v) |
| 64 | +end |
| 65 | + |
| 66 | + |
| 67 | +function Bessel_coeffs(K::Int64, γ::Float64) |
| 68 | +# Calculate the Chebyshev coefficients of exp(-2*pi*1im*x*y) on [-gam,gam]x[0,1] |
| 69 | + |
| 70 | +cfs = complex(zeros( K, K )) |
| 71 | + |
| 72 | +arg = -γ*pi/2 |
| 73 | +for p = 0:K-1 |
| 74 | + for q = mod(p,2):2:K-1 |
| 75 | + cfs[p+1,q+1] = 4.0*(1im)^q*besselj(Int((p+q)/2),arg).*besselj(Int((q-p)/2),arg) |
| 76 | + end |
| 77 | +end |
| 78 | +cfs[1,:] = cfs[1,:]/2.0 |
| 79 | +cfs[:,1] = cfs[:,1]/2.0 |
| 80 | + |
| 81 | +return cfs |
| 82 | + |
| 83 | +end |
| 84 | + |
| 85 | + |
| 86 | +function ChebyshevP{T<:AbstractFloat}(n::Int64, x::AbstractVector{T}) |
| 87 | +# Evaluate Chebyshev polynomials of degree 0,...,n at x: |
| 88 | + |
| 89 | +N = size(x,1) |
| 90 | +Tcheb = zeros(eltype(x), N, n+1) |
| 91 | + |
| 92 | +# T_0(x) = 1.0 |
| 93 | +for j = 1:N |
| 94 | + Tcheb[j, 1] = 1.0 |
| 95 | +end |
| 96 | + |
| 97 | +# T_1(x) = x |
| 98 | +for k = 2:min(n+1,2) |
| 99 | + for j = 1:N |
| 100 | + Tcheb[j, 2] = x[j] |
| 101 | + end |
| 102 | +end |
| 103 | + |
| 104 | +# 3-term recurrence relation: |
| 105 | +twoX = 2.0*x |
| 106 | +for k = 2:n |
| 107 | + for j = 1:N |
| 108 | + Tcheb[j, k+1] = twoX[j]*Tcheb[j, k] - Tcheb[j, k-1] |
| 109 | + end |
| 110 | +end |
| 111 | + |
| 112 | +return Tcheb |
| 113 | +end |
0 commit comments