@@ -268,6 +268,34 @@ function chebyshevmoments1(::Type{T}, N::Int) where T
268268 μ
269269end
270270
271+ """
272+ Modified Chebyshev moments of the first kind:
273+
274+ ```math
275+ \\ int_^a T_n(x) {\\ rm\\ ,d}x.
276+ ```
277+ """
278+ function chebyshevmoments1 (:: Type{T} , N:: Int , a:: T ) where T
279+ μ = zeros (T, N)
280+ μ[1 ] = a
281+ μ[2 ] = a^ 2 / 2
282+ θ = acos (a)
283+ for i = 2 : N- 1
284+ @inbounds μ[i+ 1 ] = (cos ((i+ 1 )* θ)/ (i+ 1 ) - cos ((i- 1 )* θ)/ (i- 1 ))/ 2
285+ end
286+ μ
287+ end
288+
289+ function chebyshevmoments1 (:: Type{T} , N:: Int , a:: NTuple{L, T} , w:: NTuple{M, T} ) where {T, L, M}
290+ @assert L == M+ 1
291+ @assert M > 0
292+ μ = zeros (T, N)
293+ for k in 1 : M
294+ μ .+ = w[k]* (chebyshevmoments1 (T, N, a[k+ 1 ]) - chebyshevmoments1 (T, N, a[k]))
295+ end
296+ μ
297+ end
298+
271299"""
272300Modified Chebyshev moments of the first kind with respect to the Jacobi weight:
273301
@@ -291,22 +319,40 @@ end
291319Modified Chebyshev moments of the first kind with respect to the logarithmic weight:
292320
293321```math
294- \\ int_{-1}^{+1} T_n(x) \\ log\\ left(\\ frac{1-x}{2 }\\ right){\\ rm\\ ,d}x.
322+ \\ int_{-1}^{+1} T_n(x) \\ log\\ left(\\ frac{2}{ 1-x}\\ right){\\ rm\\ ,d}x.
295323```
296324"""
297325function chebyshevlogmoments1 (:: Type{T} , N:: Int ) where T
298326 μ = zeros (T, N)
299- N > 0 && (μ[1 ] = - two (T))
327+ N > 0 && (μ[1 ] = two (T))
300328 if N > 1
301- μ[2 ] = - one (T)
329+ μ[2 ] = one (T)
302330 for i= 1 : N- 2
303- cst = isodd (i) ? T (4 )/ T (i^ 2 - 4 ) : T (4 )/ T (i^ 2 - 1 )
331+ cst = isodd (i) ? T (4 )/ T (4 - i^ 2 ) : T (4 )/ T (1 - i^ 2 )
304332 @inbounds μ[i+ 2 ] = ((i- 2 )* μ[i]+ cst)/ (i+ 2 )
305333 end
306334 end
307335 μ
308336end
309337
338+ """
339+ Modified Chebyshev moments of the first kind with respect to the log-Chebyshev weight:
340+
341+ ```math
342+ \\ int_{-1}^{+1} T_n(x) \\ log\\ left(\\ frac{2}{1-x}\\ right)\\ frac{{\\ rm d}x}{\\ sqrt{1-x^2}}.
343+ ```
344+ """
345+ function chebyshevlogchebyshevmoments1 (:: Type{T} , N:: Int ) where T
346+ μ = zeros (T, N)
347+ N > 0 && (μ[1 ] = 2 * log (T (2 ))* π)
348+ if N > 1
349+ for i= 1 : N- 1
350+ @inbounds μ[i+ 1 ] = T (π)/ i
351+ end
352+ end
353+ μ
354+ end
355+
310356"""
311357Modified Chebyshev moments of the first kind with respect to the absolute value weight:
312358
0 commit comments