@@ -49,25 +49,3 @@ import FastTransforms: chebyshevmoments1, chebyshevabsmoments1, bivariatemoments
49
49
μ = BlockedVector (PaddedVector (inv .(1 : 21 ), (2 n- 1 )* (2 n)÷ 2 ), 1 : 2 n- 1 )
50
50
W = BivariateGramMatrix (μ, X, Y) # works with Chebyshev X & Y, but blocks are not extracted as banded matrices
51
51
end
52
-
53
-
54
- using ClassicalOrthogonalPolynomials, MultivariateOrthogonalPolynomials, FastTransforms, LinearAlgebra, Plots
55
-
56
- using LazyArrays, BlockArrays, BlockBandedMatrices
57
-
58
- n = 50
59
-
60
- μ = BlockedVector (PaddedVector ([10 ; zeros (20 )] + inv .(1 : 21 ), (2 n- 1 )* (2 n)÷ 2 ), 1 : 2 n- 1 )
61
- # W = BivariateGramMatrix(μ, X, Y) # works with Chebyshev X & Y, but blocks are not extracted as banded matrices
62
-
63
- P = JacobiTriangle (0 , 0 , 0 )
64
- # P = RectPolynomial(Legendre(), Legendre())
65
- X = jacobimatrix (Val (1 ), P)
66
- Y = jacobimatrix (Val (2 ), P)
67
- x, y = coordinates (P);
68
-
69
- X = BandedBlockBandedMatrix (X[Block .(1 : 2 n- 1 ), Block .(1 : 2 n- 1 )])
70
- Y = BandedBlockBandedMatrix (Y[Block .(1 : 2 n- 1 ), Block .(1 : 2 n- 1 )])
71
- # Y = FastTransforms._chebyshev_y(Float64, 2n-1)
72
- W = BivariateGramMatrix (μ, X, Y) # works with Chebyshev X & Y, but blocks are not extracted as banded matrices
73
- eigvals (W)
0 commit comments