Skip to content

Commit c5b4994

Browse files
use F,G,H for sph2fourier
1 parent a641468 commit c5b4994

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed

README.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -94,26 +94,26 @@ julia> @time norm(ipaduatransform(paduatransform(v))-v)
9494

9595
## The Spherical Harmonic Transform
9696

97-
Let `A` be a matrix of spherical harmonic expansion coefficients arranged by increasing order in absolute value, alternating between negative and positive. Then `sph2fourier` converts the representation into a bivariate Fourier series, and `fourier2sph` converts it back.
97+
Let `F` be a matrix of spherical harmonic expansion coefficients arranged by increasing order in absolute value, alternating between negative and positive orders. Then `sph2fourier` converts the representation into a bivariate Fourier series, and `fourier2sph` converts it back.
9898
```julia
99-
julia> A = rand(Float64, 251, 501); FastTransforms.zero_spurious_modes!(A);
99+
julia> F = rand(Float64, 251, 501); FastTransforms.zero_spurious_modes!(F);
100100

101-
julia> B = sph2fourier(A);
101+
julia> G = sph2fourier(F);
102102

103-
julia> C = fourier2sph(B);
103+
julia> H = fourier2sph(G);
104104

105-
julia> norm(A-C)
105+
julia> norm(F-H)
106106
7.422366861016818e-14
107107

108-
julia> A = rand(Float64, 1024, 2047); FastTransforms.zero_spurious_modes!(A);
108+
julia> F = rand(Float64, 1024, 2047); FastTransforms.zero_spurious_modes!(F);
109109

110-
julia> B = sph2fourier(A; sketch = :none);
110+
julia> G = sph2fourier(F; sketch = :none);
111111
Pre-computing thin plan...100%|██████████████████████████████████████████████████| Time: 0:00:04
112112

113-
julia> C = fourier2sph(B; sketch = :none);
113+
julia> H = fourier2sph(G; sketch = :none);
114114
Pre-computing thin plan...100%|██████████████████████████████████████████████████| Time: 0:00:04
115115

116-
julia> norm(A-C)
116+
julia> norm(F-H)
117117
1.5062262753260893e-12
118118

119119
```

0 commit comments

Comments
 (0)