|
| 1 | +""" |
| 2 | + leg2cheb(v::AbstractVector; normleg::Bool=false, normcheb::Bool=false) |
| 3 | +
|
| 4 | +Convert the vector of expansions coefficients `v` from a Legendre to a Chebyshev basis. |
| 5 | +The keyword arguments denote whether the bases are normalized. |
| 6 | +""" |
| 7 | +leg2cheb |
| 8 | + |
| 9 | +""" |
| 10 | + cheb2leg(v::AbstractVector; normcheb::Bool=false, normleg::Bool=false) |
| 11 | +
|
| 12 | +Convert the vector of expansions coefficients `v` from a Chebyshev to a Legendre basis. |
| 13 | +The keyword arguments denote whether the bases are normalized. |
| 14 | +""" |
| 15 | +cheb2leg |
| 16 | + |
| 17 | +""" |
| 18 | + ultra2ultra(v::AbstractVector, λ, μ; norm1::Bool=false, norm2::Bool=false) |
| 19 | +
|
| 20 | +Convert the vector of expansions coefficients `v` from an Ultraspherical basis of |
| 21 | +order `λ` to an Ultraspherical basis of order `μ`. |
| 22 | +The keyword arguments denote whether the bases are normalized. |
| 23 | +""" |
| 24 | +ultra2ultra |
| 25 | + |
| 26 | +""" |
| 27 | + jac2jac(v::AbstractVector, α, β, γ, δ; norm1::Bool=false, norm2::Bool=false) |
| 28 | +
|
| 29 | +Convert the vector of expansions coefficients `v` from a Jacobi basis of |
| 30 | +order `(α,β)` to a Jacobi basis of order `(γ,δ)`. |
| 31 | +The keyword arguments denote whether the bases are normalized. |
| 32 | +""" |
| 33 | +jac2jac |
| 34 | + |
| 35 | +""" |
| 36 | + lag2lag(v::AbstractVector, α, β; norm1::Bool=false, norm2::Bool=false) |
| 37 | +
|
| 38 | +Convert the vector of expansions coefficients `v` from a Laguerre basis of |
| 39 | +order `α` to a La basis of order `β`. |
| 40 | +The keyword arguments denote whether the bases are normalized.""" |
| 41 | +lag2lag |
| 42 | + |
| 43 | +""" |
| 44 | + jac2ultra(v::AbstractVector, α, β, λ; normjac::Bool=false, normultra::Bool=false) |
| 45 | +
|
| 46 | +Convert the vector of expansions coefficients `v` from a Jacobi basis of |
| 47 | +order `(α,β)` to an Ultraspherical basis of order `λ`. |
| 48 | +The keyword arguments denote whether the bases are normalized.""" |
| 49 | +jac2ultra |
| 50 | + |
| 51 | +""" |
| 52 | + ultra2jac(v::AbstractVector, λ, α, β; normultra::Bool=false, normjac::Bool=false) |
| 53 | +
|
| 54 | +Convert the vector of expansions coefficients `v` from an Ultraspherical basis of |
| 55 | +order `λ` to a Jacobi basis of order `(α,β)`. |
| 56 | +The keyword arguments denote whether the bases are normalized. |
| 57 | +""" |
| 58 | +ultra2jac |
| 59 | + |
| 60 | +""" |
| 61 | + jac2cheb(v::AbstractVector, α, β; normjac::Bool=false, normcheb::Bool=false) |
| 62 | +
|
| 63 | +Convert the vector of expansions coefficients `v` from a Jacobi basis of |
| 64 | +order `(α,β)` to a Chebyshev basis. |
| 65 | +The keyword arguments denote whether the bases are normalized. |
| 66 | +""" |
| 67 | +jac2cheb |
| 68 | + |
| 69 | +""" |
| 70 | + cheb2jac(v::AbstractVector, α, β; normcheb::Bool=false, normjac::Bool=false) |
| 71 | +
|
| 72 | +Convert the vector of expansions coefficients `v` from a Chebyshev basis to a |
| 73 | +Jacobi basis of order `(α,β)`. |
| 74 | +The keyword arguments denote whether the bases are normalized. |
| 75 | +""" |
| 76 | +cheb2jac |
| 77 | + |
| 78 | +""" |
| 79 | + ultra2cheb(v::AbstractVector, λ; normultra::Bool=false, normcheb::Bool=false) |
| 80 | +
|
| 81 | +Convert the vector of expansions coefficients `v` from an Ultraspherical basis of |
| 82 | +order `λ` to a Chebyshev basis. |
| 83 | +The keyword arguments denote whether the bases are normalized. |
| 84 | +""" |
| 85 | +ultra2cheb |
| 86 | + |
| 87 | +""" |
| 88 | + cheb2ultra(v::AbstractVector, λ; normcheb::Bool=false, normultra::Bool=false) |
| 89 | +
|
| 90 | +Convert the vector of expansions coefficients `v` from a Chebyshev basis |
| 91 | +to an Ultraspherical basis of order `λ`. |
| 92 | +The keyword arguments denote whether the bases are normalized. |
| 93 | +""" |
| 94 | +cheb2ultra |
| 95 | + |
| 96 | +""" |
| 97 | + associatedjac2jac(v::AbstractVector, c::Integer, α, β, γ, δ; norm1::Bool=false, norm2::Bool=false) |
| 98 | +
|
| 99 | +Convert the vector of expansions coefficients `v` from an associated Jacobi basis |
| 100 | +of orders `(α,β)` to a Jacobi basis of order `(γ,δ)`. |
| 101 | +The keyword arguments denote whether the bases are normalized. |
| 102 | +""" |
| 103 | +associatedjac2jac |
| 104 | + |
| 105 | +""" |
| 106 | + modifiedjac2jac(v::AbstractVector{T}, α, β, u::Vector{T}; verbose::Bool=false) where {T} |
| 107 | + modifiedjac2jac(v::AbstractVector{T}, α, β, u::Vector{T}, v::Vector{T}; verbose::Bool=false) where {T} |
| 108 | +""" |
| 109 | +modifiedjac2jac |
| 110 | + |
| 111 | +""" |
| 112 | + modifiedlag2lag(v::AbstractVector{T}, α, u::Vector{T}; verbose::Bool=false) |
| 113 | + modifiedlag2lag(v::AbstractVector{T}, α, u::Vector{T}, v::Vector{T}; verbose::Bool=false) where {T} |
| 114 | +""" |
| 115 | +modifiedlag2lag |
| 116 | + |
| 117 | +""" |
| 118 | + modifiedherm2herm(v::AbstractVector{T}, u::Vector{T}; verbose::Bool=false) |
| 119 | + modifiedherm2herm(v::AbstractVector{T}, u::Vector{T}, v::Vector{T}; verbose::Bool=false) where {T} |
| 120 | +""" |
| 121 | +modifiedherm2herm |
0 commit comments