Skip to content

Commit ddad8ff

Browse files
cosmetic changes
1 parent f492e4b commit ddad8ff

File tree

4 files changed

+10
-8
lines changed

4 files changed

+10
-8
lines changed

examples/disk.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
# We analyze the function on an $N\times M$ tensor product grid defined by:
99
# ```math
1010
# \begin{aligned}
11-
# r_n & = \cos\left[(n+\tfrac{1}{2})\pi/2N],\quad{\rm for} 0\le n < N,\quad{\rm and}\\
11+
# r_n & = \cos\left[(n+\tfrac{1}{2})\pi/2N\right],\quad{\rm for} 0\le n < N,\quad{\rm and}\\
1212
# \theta_m & = 2\pi m/M,\quad{\rm for}\quad 0\le m < M;
1313
# \end{aligned}
1414
# ```

examples/padua.jl

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -7,12 +7,14 @@ using FastTransforms
77
# We define the Padua points and extract Cartesian components:
88
N = 15
99
pts = paduapoints(N)
10-
x = pts[:,1];
11-
y = pts[:,2];
10+
x = pts[:,1]
11+
y = pts[:,2]
12+
nothing #hide
1213

1314
# We take the Padua transform of the function:
1415
f = (x,y) -> exp(x + cos(y))
15-
= paduatransform(f.(x , y));
16+
= paduatransform(f.(x , y))
17+
nothing #hide
1618

1719
# and use the coefficients to create an approximation to the function $f$:
1820
= (x,y) -> begin

examples/spinweighted.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
# ```
66
# for some $k\in\mathbb{R}^3$ and where $r\in\mathbb{S}^2$, using spin-$0$ spherical harmonics.
77
#
8-
# It applies $\dh$, the spin-raising operator,
8+
# It applies ð, the spin-raising operator,
99
# both on the spin-$0$ coefficients as well as the original function,
1010
# followed by a spin-$1$ analysis to compare coefficients.
1111
#
@@ -36,13 +36,13 @@ P = plan_spinsph2fourier(F, 0)
3636
# And an FFTW Fourier analysis plan on $\mathbb{S}^2$:
3737
PA = plan_spinsph_analysis(F, 0)
3838

39-
# Its spin-0 spherical harmonic coefficients are:
39+
# Its spin-$0$ spherical harmonic coefficients are:
4040
U⁰ = P\(PA*F)
4141

4242
# We can check its $L^2(\mathbb{S}^2)$ norm against an exact result:
4343
norm(U⁰) sqrt(4π)
4444

45-
# Spin can be incremented by applying $\dh$, either on the spin-$0$ coefficients:
45+
# Spin can be incremented by applying ð, either on the spin-$0$ coefficients:
4646
U¹c = zero(U⁰)
4747
for n in 1:N-1
4848
U¹c[n, 1] = sqrt(n*(n+1))*U⁰[n+1, 1]

examples/triangle.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@
1111
# We analyze $f(x,y)$ on an $N\times M$ mapped tensor product grid defined by:
1212
# ```math
1313
# \begin{aligned}
14-
# x & = (1+u)/2,\quad{\rm and}\quad y = (1-u)*(1+v)/4,\quad {\rm where:}\\
14+
# x & = (1+u)/2,\quad{\rm and}\quad y = (1-u)(1+v)/4,\quad {\rm where:}\\
1515
# u_n & = \cos\left[(n+\tfrac{1}{2})\pi/N\right],\quad{\rm for}\quad 0\le n < N,\quad{\rm and}\\
1616
# v_m & = \cos\left[(m+\tfrac{1}{2})\pi/M\right],\quad{\rm for}\quad 0\le m < M;
1717
# \end{aligned}

0 commit comments

Comments
 (0)