|
| 1 | +""" |
| 2 | +Pre-plan an Inverse Padua Transform. |
| 3 | +""" |
| 4 | +immutable IPaduaTransformPlan{DCTPLAN} |
| 5 | + cfsmat::Matrix{Float64} |
| 6 | + tensorvals::Matrix{Float64} |
| 7 | + padvals::Vector{Float64} |
| 8 | + dctplan::DCTPLAN |
| 9 | +end |
| 10 | + |
| 11 | +function plan_ipaduatransform(v::AbstractVector) |
| 12 | + N=length(v) |
| 13 | + n=Int(cld(-3+sqrt(1+8N),2)) |
| 14 | + @assert N==div((n+1)*(n+2),2) |
| 15 | + IPaduaTransformPlan(zeros(Float64,n+2,n+1),Array(Float64,n+2,n+1), |
| 16 | + Array(Float64,N),FFTW.plan_r2r(Array(eltype(v),n+2,n+1),FFTW.REDFT00)) |
| 17 | +end |
| 18 | + |
| 19 | +""" |
| 20 | +Inverse Padua Transform maps the 2D Chebyshev coefficients to the values of the interpolation polynomial at the Padua points. |
| 21 | +""" |
| 22 | +function ipaduatransform(P::IPaduaTransformPlan,v::AbstractVector) |
| 23 | + cfsmat=trianglecfsmat(P,v) |
| 24 | + tensorvals=P.tensorvals |
| 25 | + cfsmat[:,2:end-1]=scale!(cfsmat[:,2:end-1],0.5) |
| 26 | + cfsmat[2:end-1,:]=scale!(cfsmat[2:end-1,:],0.5) |
| 27 | + tensorvals=P.dctplan*cfsmat |
| 28 | + paduavals=paduavec(P,tensorvals) |
| 29 | + return paduavals |
| 30 | +end |
| 31 | + |
| 32 | +function ipaduatransform(v::AbstractVector) |
| 33 | + cfsmat=trianglecfsmat(v) |
| 34 | + n=size(cfsmat,2)-1 |
| 35 | + tensorvals=Array(Float64,n+2,n+1) |
| 36 | + cfsmat[:,2:end-1]=scale!(cfsmat[:,2:end-1],0.5) |
| 37 | + cfsmat[2:end-1,:]=scale!(cfsmat[2:end-1,:],0.5) |
| 38 | + tensorvals= FFTW.r2r(cfsmat,FFTW.REDFT00) |
| 39 | + paduavals=paduavec(tensorvals) |
| 40 | + return paduavals |
| 41 | +end |
| 42 | +""" |
| 43 | +Creates (n+2)x(n+1) Chebyshev coefficient matrix from triangle coefficients. |
| 44 | +""" |
| 45 | +function trianglecfsmat(P::IPaduaTransformPlan,cfs::AbstractVector) |
| 46 | + N=length(cfs) |
| 47 | + n=Int(cld(-3+sqrt(1+8N),2)) |
| 48 | + cfsmat=P.cfsmat |
| 49 | + m=1 |
| 50 | + for d=1:n+1, k=1:d |
| 51 | + j=d-k+1 |
| 52 | + cfsmat[k,j]=cfs[m] |
| 53 | + if m==N |
| 54 | + return cfsmat |
| 55 | + else |
| 56 | + m+=1 |
| 57 | + end |
| 58 | + end |
| 59 | + return cfsmat |
| 60 | +end |
| 61 | + |
| 62 | +function trianglecfsmat(cfs::AbstractVector) |
| 63 | + N=length(cfs) |
| 64 | + n=Int(cld(-3+sqrt(1+8N),2)) |
| 65 | + @assert N==div((n+1)*(n+2),2) |
| 66 | + cfsmat=zeros(Float64,n+2,n+1) |
| 67 | + m=1 |
| 68 | + for d=1:n+1, k=1:d |
| 69 | + j=d-k+1 |
| 70 | + cfsmat[k,j]=cfs[m] |
| 71 | + if m==N |
| 72 | + return cfsmat |
| 73 | + else |
| 74 | + m+=1 |
| 75 | + end |
| 76 | + end |
| 77 | + return cfsmat |
| 78 | +end |
| 79 | + |
| 80 | +""" |
| 81 | +Vectorizes the function values at the Padua points. |
| 82 | +""" |
| 83 | +function paduavec(P::IPaduaTransformPlan,padmat::Matrix) |
| 84 | + n=size(padmat,2)-1 |
| 85 | + padvals=P.padvals |
| 86 | + if iseven(n)>0 |
| 87 | + d=div(n+2,2) |
| 88 | + m=0 |
| 89 | + for i=1:n+1 |
| 90 | + padvals[m+1:m+d]=padmat[1+mod(i,2):2:end-1+mod(i,2),i] |
| 91 | + m+=d |
| 92 | + end |
| 93 | + else |
| 94 | + padvals=padmat[1:2:end-1] |
| 95 | + end |
| 96 | + return padvals |
| 97 | +end |
| 98 | + |
| 99 | +function paduavec(padmat::Matrix) |
| 100 | + n=size(padmat,2)-1 |
| 101 | + N=div((n+1)*(n+2),2) |
| 102 | + padvals=Array(Float64,N) |
| 103 | + if iseven(n)>0 |
| 104 | + d=div(n+2,2) |
| 105 | + m=0 |
| 106 | + for i=1:n+1 |
| 107 | + padvals[m+1:m+d]=padmat[1+mod(i,2):2:end-1+mod(i,2),i] |
| 108 | + m+=d |
| 109 | + end |
| 110 | + else |
| 111 | + padvals=padmat[1:2:end-1] |
| 112 | + end |
| 113 | + return padvals |
| 114 | +end |
| 115 | + |
| 116 | +""" |
| 117 | +Pre-plan a Padua Transform. |
| 118 | +""" |
| 119 | +immutable PaduaTransformPlan{IDCTPLAN} |
| 120 | + vals::Matrix{Float64} |
| 121 | + tensorcfs::Matrix{Float64} |
| 122 | + retvec::Vector{Float64} |
| 123 | + idctplan::IDCTPLAN |
| 124 | +end |
| 125 | + |
| 126 | +function plan_paduatransform(v::AbstractVector) |
| 127 | + N=length(v) |
| 128 | + n=Int(cld(-3+sqrt(1+8N),2)) |
| 129 | + @assert N==div((n+1)*(n+2),2) |
| 130 | + PaduaTransformPlan(zeros(Float64,n+2,n+1),Array(Float64,n+2,n+1), |
| 131 | + zeros(Float64,N),FFTW.plan_r2r(Array(eltype(v),n+2,n+1),FFTW.REDFT00)) |
| 132 | +end |
| 133 | + |
| 134 | +""" |
| 135 | +Padua Transform maps from interpolant values at the Padua points to the 2D Chebyshev coefficients. |
| 136 | +""" |
| 137 | +function paduatransform(P::PaduaTransformPlan,v::AbstractVector) |
| 138 | + N=length(v) |
| 139 | + n=Int(cld(-3+sqrt(1+8N),2)) |
| 140 | + tensorcfs=P.tensorcfs |
| 141 | + vals=paduavalsmat(P,v) |
| 142 | + tensorcfs=P.idctplan*vals |
| 143 | + tensorcfs=scale!(tensorcfs,2./(n*(n+1.))) |
| 144 | + tensorcfs[1,:]=scale!(tensorcfs[1,:],0.5) |
| 145 | + tensorcfs[:,1]=scale!(tensorcfs[:,1],0.5) |
| 146 | + tensorcfs[end,:]=scale!(tensorcfs[end,:],0.5) |
| 147 | + tensorcfs[:,end]=scale!(tensorcfs[:,end],0.5) |
| 148 | + cfs=trianglecfsvec(P,tensorcfs) |
| 149 | + return cfs |
| 150 | +end |
| 151 | + |
| 152 | +function paduatransform(v::AbstractVector) |
| 153 | + N=length(v) |
| 154 | + n=Int(cld(-3+sqrt(1+8N),2)) |
| 155 | + tensorcfs=Array(Float64,n+2,n+1) |
| 156 | + vals=paduavalsmat(v) |
| 157 | + tensorcfs=FFTW.r2r(vals,FFTW.REDFT00) |
| 158 | + tensorcfs=scale!(tensorcfs,2./(n*(n+1.))) |
| 159 | + tensorcfs[1,:]=scale!(tensorcfs[1,:],0.5) |
| 160 | + tensorcfs[:,1]=scale!(tensorcfs[:,1],0.5) |
| 161 | + tensorcfs[end,:]=scale!(tensorcfs[end,:],0.5) |
| 162 | + tensorcfs[:,end]=scale!(tensorcfs[:,end],0.5) |
| 163 | + cfsvec=trianglecfsvec(tensorcfs) |
| 164 | + return cfsvec |
| 165 | +end |
| 166 | + |
| 167 | +""" |
| 168 | +Creates (n+2)x(n+1) matrix of interpolant values on the tensor grid at the (n+1)(n+2)/2 Padua points. |
| 169 | +""" |
| 170 | +function paduavalsmat(P::PaduaTransformPlan,v::AbstractVector) |
| 171 | + N=length(v) |
| 172 | + n=Int(cld(-3+sqrt(1+8N),2)) |
| 173 | + vals=P.vals |
| 174 | + if iseven(n)>0 |
| 175 | + d=div(n+2,2) |
| 176 | + m=0 |
| 177 | + for i=1:n+1 |
| 178 | + vals[1+mod(i,2):2:end-1+mod(i,2),i]=v[m+1:m+d] |
| 179 | + m+=d |
| 180 | + end |
| 181 | + else |
| 182 | + vals[1:2:end]=v |
| 183 | + end |
| 184 | + return vals |
| 185 | +end |
| 186 | + |
| 187 | +function paduavalsmat(v::AbstractVector) |
| 188 | + N=length(v) |
| 189 | + n=Int(cld(-3+sqrt(1+8N),2)) |
| 190 | + @assert N==div((n+1)*(n+2),2) |
| 191 | + vals=zeros(Float64,n+2,n+1) |
| 192 | + if iseven(n)>0 |
| 193 | + d=div(n+2,2) |
| 194 | + m=0 |
| 195 | + for i=1:n+1 |
| 196 | + vals[1+mod(i,2):2:end-1+mod(i,2),i]=v[m+1:m+d] |
| 197 | + m+=d |
| 198 | + end |
| 199 | + else |
| 200 | + vals[1:2:end]=v |
| 201 | + end |
| 202 | + return vals |
| 203 | +end |
| 204 | + |
| 205 | +""" |
| 206 | +Creates length (n+1)(n+2)/2 vector from matrix of triangle Chebyshev coefficients. |
| 207 | +""" |
| 208 | +function trianglecfsvec(P::PaduaTransformPlan,cfs::Matrix) |
| 209 | + m=size(cfs,2) |
| 210 | + ret=P.retvec |
| 211 | + l=1 |
| 212 | + for d=1:m,k=1:d |
| 213 | + j=d-k+1 |
| 214 | + ret[l]=cfs[k,j] |
| 215 | + l+=1 |
| 216 | + end |
| 217 | + return ret |
| 218 | +end |
| 219 | + |
| 220 | +function trianglecfsvec(cfs::Matrix) |
| 221 | + n,m=size(cfs) |
| 222 | + N=div(n*m,2) |
| 223 | + ret=Array(Float64,N) |
| 224 | + l=1 |
| 225 | + for d=1:m,k=1:d |
| 226 | + j=d-k+1 |
| 227 | + ret[l]=cfs[k,j] |
| 228 | + l+=1 |
| 229 | + end |
| 230 | + return ret |
| 231 | +end |
| 232 | + |
| 233 | +""" |
| 234 | +Returns coordinates of the (n+1)(n+2)/2 Padua points. |
| 235 | +""" |
| 236 | +function paduapoints(n::Integer) |
| 237 | + N=div((n+1)*(n+2),2) |
| 238 | + MM=Array(Float64,N,2) |
| 239 | + m=0 |
| 240 | + delta=0 |
| 241 | + NN=fld(n+2,2) |
| 242 | + for k=n:-1:0 |
| 243 | + if isodd(n)>0 |
| 244 | + delta=mod(k,2) |
| 245 | + end |
| 246 | + for j=NN+delta:-1:1 |
| 247 | + m+=1 |
| 248 | + MM[m,1]=sinpi(1.*k/n-0.5) |
| 249 | + if isodd(n-k)>0 |
| 250 | + MM[m,2]=sinpi((2j-1.)/(n+1.)-0.5) |
| 251 | + else |
| 252 | + MM[m,2]=sinpi((2j-2.)/(n+1.)-0.5) |
| 253 | + end |
| 254 | + end |
| 255 | + end |
| 256 | + return MM |
| 257 | +end |
| 258 | + |
| 259 | +""" |
| 260 | +Interpolates a 2d function at a given point using 2d Chebyshev series. |
| 261 | +""" |
| 262 | +function paduaeval(f::Function,x::Float64,y::Float64,m::Integer) |
| 263 | + M=div((m+1)*(m+2),2) |
| 264 | + pvals=Array(Float64,M) |
| 265 | + p=paduapoints(m) |
| 266 | + pvals=map(f,p[:,1],p[:,2]) |
| 267 | + plan=plan_paduatransform(pvals) |
| 268 | + coeffs=paduatransform(plan,pvals) |
| 269 | + cfs_mat=trianglecfsmat(coeffs) |
| 270 | + cfs_mat=cfs_mat[1:end-1,:] |
| 271 | + f_x=sum([cfs_mat[k,j]*cos((j-1)*acos(x))*cos((k-1)*acos(y)) for k=1:m+1, j=1:m+1]) |
| 272 | + return f_x |
| 273 | +end |
0 commit comments