You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
For 64-bit floating-point arithmetic, the Lambda function uses the asymptotic series for τ in Appendix B of
147
+
For 64-bit floating-point arithmetic, the Lambda function uses the asymptotic series for ``\tau`` in Appendix B of
144
148
145
-
I. Bogaert and B. Michiels and J. Fostier, 𝒪(1) computation of Legendre polynomials and Gauss–Legendre nodes and weights for parallel computing, SIAM J. Sci. Comput., 34:C83–C101, 2012.
149
+
I. Bogaert and B. Michiels and J. Fostier, 𝒪(1) computation of Legendre polynomials and Gauss–Legendre nodes and weights for parallel computing, *SIAM J. Sci. Comput.*, **34**:C83–C101, 2012.
146
150
"""
147
151
functionΛ(x::Float64)
148
152
if x >9.84475
@@ -153,9 +157,8 @@ function Λ(x::Float64)
153
157
end
154
158
end
155
159
156
-
157
160
doc"""
158
-
The Lambda function Λ(z,λ₁,λ₂) = Γ(z+λ₁)/Γ(z+λ₂) for the ratio of gamma functions.
161
+
The Lambda function ``\Lambda(z,λ₁,λ₂) = \frac{\Gamma(z+\lambda_1)}{Γ(z+\lambda_2)}`` for the ratio of gamma functions.
@@ -427,7 +432,7 @@ function chebyshevjacobimoments2{T<:AbstractFloat}(N::Int,α::T,β::T)
427
432
end
428
433
429
434
doc"""
430
-
Compute Jacobi expansion coefficients in Pₙ^(α+1,β) given Jacobi expansion coefficients in Pₙ^(α,β) in-place.
435
+
Compute Jacobi expansion coefficients in ``P_n^{(\alpha+1,\beta)}(x)`` given Jacobi expansion coefficients in ``P_n^{(\alpha,\beta)}(x)`` in-place.
431
436
"""
432
437
functionincrementα!(c::AbstractVector,α,β)
433
438
αβ,N = α+β,length(c)
@@ -438,7 +443,7 @@ function incrementα!(c::AbstractVector,α,β)
438
443
end
439
444
440
445
doc"""
441
-
Compute Jacobi expansion coefficients in Pₙ^(α,β+1) given Jacobi expansion coefficients in Pₙ^(α,β) in-place.
446
+
Compute Jacobi expansion coefficients in ``P_n^{(\alpha,\beta+1)}(x)`` given Jacobi expansion coefficients in ``P_n^{(\alpha,\beta)}(x)`` in-place.
442
447
"""
443
448
functionincrementβ!(c::AbstractVector,α,β)
444
449
αβ,N = α+β,length(c)
@@ -449,7 +454,7 @@ function incrementβ!(c::AbstractVector,α,β)
449
454
end
450
455
451
456
doc"""
452
-
Compute Jacobi expansion coefficients in Pₙ^(α+1,α+1) given Jacobi expansion coefficients in Pₙ^(α,α) in-place.
457
+
Compute Jacobi expansion coefficients in ``P_n^{(\alpha+1,\alpha+1)}(x)`` given Jacobi expansion coefficients in ``P_n^{(\alpha,\alpha)}(x)`` in-place.
453
458
"""
454
459
functionincrementαβ!(c::AbstractVector,α,β)
455
460
@assert α == β
@@ -462,7 +467,7 @@ function incrementαβ!(c::AbstractVector,α,β)
462
467
end
463
468
464
469
doc"""
465
-
Compute Jacobi expansion coefficients in Pₙ^(α-1,β) given Jacobi expansion coefficients in Pₙ^(α,β) in-place.
470
+
Compute Jacobi expansion coefficients in ``P_n^{(\alpha-1,\beta)}(x)`` given Jacobi expansion coefficients in ``P_n^{(\alpha,\beta)}(x)`` in-place.
466
471
"""
467
472
functiondecrementα!(c::AbstractVector,α,β)
468
473
αβ,N = α+β,length(c)
@@ -473,7 +478,7 @@ function decrementα!(c::AbstractVector,α,β)
473
478
end
474
479
475
480
doc"""
476
-
Compute Jacobi expansion coefficients in Pₙ^(α,β-1) given Jacobi expansion coefficients in Pₙ^(α,β) in-place.
481
+
Compute Jacobi expansion coefficients in ``P_n^{(\alpha,\beta-1)}(x)`` given Jacobi expansion coefficients in ``P_n^{(\alpha,\beta)}(x)`` in-place.
477
482
"""
478
483
functiondecrementβ!(c::AbstractVector,α,β)
479
484
αβ,N = α+β,length(c)
@@ -484,7 +489,7 @@ function decrementβ!(c::AbstractVector,α,β)
484
489
end
485
490
486
491
doc"""
487
-
Compute Jacobi expansion coefficients in Pₙ^(α-1,α-1) given Jacobi expansion coefficients in Pₙ^(α,α) in-place.
492
+
Compute Jacobi expansion coefficients in ``P_n^{(\alpha-1,\alpha-1)}(x)`` given Jacobi expansion coefficients in ``P_n^{(\alpha,\alpha)}(x)`` in-place.
0 commit comments