@@ -135,7 +135,7 @@ DuffyTriangle(S::KoornwinderTriangle) = DuffyTriangle(Chebyshev(0..1)*Jacobi(S.
135
135
136
136
function points (S:: DuffyTriangle , N)
137
137
pts = points (S. space, N)
138
- fromcanonical .(S. domain, iduffy .(pts))
138
+ fromcanonical .(Ref ( S. domain) , iduffy .(pts))
139
139
end
140
140
141
141
plan_transform (S:: DuffyTriangle , n:: AbstractVector ) = TransformPlan (S, plan_transform (S. space,n), Val{false })
195
195
196
196
function trivec (F̌)
197
197
N = size (F̌,1 )
198
- v = Array {eltype(F̌)} (N* (N+ 1 ) ÷ 2 )
198
+ v = Array {eltype(F̌)} (undef, N* (N+ 1 ) ÷ 2 )
199
199
j = 1
200
200
for n= 0 : N- 1 , k= 0 : n
201
201
v[j] = F̌[n- k+ 1 ,k+ 1 ]
424
424
# TODO : replace with RaggedMatrix
425
425
function totree (S,f:: Fun )
426
426
N= block (S,ncoefficients (f))
427
- ret = Array {Vector{eltype (f)}} (Int (N))
427
+ ret = Array {Vector{cfstype (f)}} (undef, Int (N))
428
428
for K= Block (1 ): N
429
429
ret[Int (K)]= coefficient (f,K)
430
430
end
@@ -552,8 +552,8 @@ function Base.convert(::Type{BandedBlockBandedMatrix},
552
552
D = parent (S)
553
553
sp= domainspace (D)
554
554
α,β,γ = sp. α,sp. β,sp. γ
555
- K_sh = first (parentindexes (S)[1 ])- 1
556
- J_sh = first (parentindexes (S)[2 ])- 1
555
+ K_sh = first (parentindices (S)[1 ])- 1
556
+ J_sh = first (parentindices (S)[2 ])- 1
557
557
N,M= nblocks (ret):: Tuple{Int,Int}
558
558
559
559
if D. order == [1 ,0 ]
@@ -715,8 +715,8 @@ function Base.convert(::Type{BandedBlockBandedMatrix},S::SubOperator{T,ConcreteC
715
715
K1= domainspace (parent (S))
716
716
K2= rangespace (parent (S))
717
717
α,β,γ = K1. α,K1. β,K1. γ
718
- K_sh = first (parentindexes (S)[1 ])- 1
719
- J_sh = first (parentindexes (S)[2 ])- 1
718
+ K_sh = first (parentindices (S)[1 ])- 1
719
+ J_sh = first (parentindices (S)[2 ])- 1
720
720
N,M= nblocks (ret):: Tuple{Int,Int}
721
721
722
722
if K2. α == α+ 1 && K2. β == β && K2. γ == γ
@@ -855,8 +855,8 @@ struct Lowering{k,S,T} <: Operator{T}
855
855
space:: S
856
856
end
857
857
858
- Base . convert ( :: Type{ Lowering{k}} , sp) where k = Lowering {k,typeof(sp),prectype(sp)} (sp)
859
- Base. convert (:: Type{Operator{T}} ,J:: Lowering{x,S} ) where {x,T,S} = Lowering {x,S,T} (J. space)
858
+ Lowering {k} ( sp) where k = Lowering {k,typeof(sp),prectype(sp)} (sp)
859
+ Base. convert (:: Type{Operator{T}} , J:: Lowering{x,S} ) where {x,T,S} = Lowering {x,S,T} (J. space)
860
860
861
861
862
862
domainspace (R:: Lowering ) = R. space
@@ -951,8 +951,8 @@ function Base.convert(::Type{BandedBlockBandedMatrix},S::SubOperator{T,Lowering{
951
951
ret = BandedBlockBandedMatrix (Zeros, S)
952
952
R = parent (S)
953
953
α,β,γ= R. space. α,R. space. β,R. space. γ
954
- K_sh = first (parentindexes (S)[1 ])- 1
955
- J_sh = first (parentindexes (S)[2 ])- 1
954
+ K_sh = first (parentindices (S)[1 ])- 1
955
+ J_sh = first (parentindices (S)[2 ])- 1
956
956
N,M= nblocks (ret):: Tuple{Int,Int}
957
957
958
958
for KK= Block .(1 : N)
@@ -984,8 +984,8 @@ function Base.convert(::Type{BandedBlockBandedMatrix},S::SubOperator{T,Lowering{
984
984
ret = BandedBlockBandedMatrix (Zeros,S)
985
985
R = parent (S)
986
986
α,β,γ= R. space. α,R. space. β,R. space. γ
987
- K_sh = first (parentindexes (S)[1 ])- 1
988
- J_sh = first (parentindexes (S)[2 ])- 1
987
+ K_sh = first (parentindices (S)[1 ])- 1
988
+ J_sh = first (parentindices (S)[2 ])- 1
989
989
N,M = nblocks (ret):: Tuple{Int,Int}
990
990
991
991
@@ -1022,8 +1022,8 @@ function Base.convert(::Type{BandedBlockBandedMatrix},S::SubOperator{T,Lowering{
1022
1022
ret = BandedBlockBandedMatrix (Zeros,S)
1023
1023
R = parent (S)
1024
1024
α,β,γ= R. space. α,R. space. β,R. space. γ
1025
- K_sh = first (parentindexes (S)[1 ])- 1
1026
- J_sh = first (parentindexes (S)[2 ])- 1
1025
+ K_sh = first (parentindices (S)[1 ])- 1
1026
+ J_sh = first (parentindices (S)[2 ])- 1
1027
1027
N,M= nblocks (ret):: Tuple{Int,Int}
1028
1028
1029
1029
for KK= Block .(1 : N)
0 commit comments