|
| 1 | +#### |
| 2 | +# Here we implement multivariable clenshaw |
| 3 | +# |
| 4 | +# It's hard-coded for Triangles right now. |
| 5 | +#### |
| 6 | +struct ClenshawRecurrenceData{T, S} |
| 7 | + space::S |
| 8 | + B̃ˣ::Vector{BandedMatrix{T,Matrix{T}}} |
| 9 | + B̃ʸ::Vector{BandedMatrix{T,Matrix{T}}} |
| 10 | + B::Vector{BandedMatrix{T,Matrix{T}}} # B̃ˣAˣ + B̃ʸAʸ |
| 11 | + C::Vector{BandedMatrix{T,Matrix{T}}} #B̃ˣCˣ + B̃ʸCʸ |
| 12 | +end |
| 13 | + |
| 14 | +ClenshawRecurrenceData{T}(sp, N) where T = ClenshawRecurrenceData{T, typeof(sp)}(sp, N) |
| 15 | +ClenshawRecurrenceData(sp, N) = ClenshawRecurrenceData{prectype(sp)}(sp, N) |
| 16 | + |
| 17 | +function ClenshawRecurrenceData{T,S}(sp::S, N) where {T,S<:JacobiTriangle} |
| 18 | + B̃ˣ = Vector{BandedMatrix{T,Matrix{T}}}(undef, N-1) |
| 19 | + B̃ʸ = Vector{BandedMatrix{T,Matrix{T}}}(undef, N-1) |
| 20 | + B = Vector{BandedMatrix{T,Matrix{T}}}(undef, N-1) |
| 21 | + C = Vector{BandedMatrix{T,Matrix{T}}}(undef, N-2) |
| 22 | + Jx_∞, Jy_∞ = jacobioperators(sp) |
| 23 | + Jx, Jy = BandedBlockBandedMatrix(Jx_∞[Block.(1:N), Block.(1:N-1)]'), |
| 24 | + BandedBlockBandedMatrix(Jy_∞[Block.(1:N), Block.(1:N-1)]') |
| 25 | + |
| 26 | + |
| 27 | + for K = 1:N-1 |
| 28 | + Ax,Ay = view(Jx,Block(K,K)), view(Jy,Block(K,K)) |
| 29 | + Bx,By = view(Jx,Block(K,K+1)), view(Jy,Block(K,K+1)) |
| 30 | + b₂ = By[K,K+1] |
| 31 | + |
| 32 | + B̃ˣ[K] = BandedMatrix{T}(Zeros(K+1,K), (2,0)) |
| 33 | + B̃ʸ[K] = BandedMatrix{T}(Zeros(K+1,K), (2,0)) |
| 34 | + B[K] = BandedMatrix{T}(undef, (K+1,K), (2,0)) |
| 35 | + |
| 36 | + B̃ˣ[K][band(0)] .= inv.(view(Bx, band(0))) |
| 37 | + B̃ˣ[K][end,end] = - inv(b₂) * By[K,K]/Bx[K,K] |
| 38 | + B̃ʸ[K][end,end] = inv(b₂) |
| 39 | + |
| 40 | + if K > 1 |
| 41 | + Cx,Cy = view(Jx,Block(K,K-1)), view(Jy,Block(K,K-1)) |
| 42 | + C[K-1] = BandedMatrix{T}(undef, (K+1,K-1), (2,0)) |
| 43 | + B̃ˣ[K][end,end-1] = - inv(b₂) * By[K,K-1]/Bx[K-1,K-1] |
| 44 | + C[K-1] .= Mul(B̃ˣ[K] , Cx) |
| 45 | + C[K-1] .= Mul(B̃ʸ[K] , Cy) .+ C[K-1] |
| 46 | + end |
| 47 | + |
| 48 | + B[K] .= Mul(B̃ˣ[K] , Ax) |
| 49 | + B[K] .= Mul(B̃ʸ[K] , Ay) .+ B[K] |
| 50 | + end |
| 51 | + |
| 52 | + ClenshawRecurrenceData{T,S}(sp, B̃ˣ, B̃ʸ, B, C) |
| 53 | +end |
| 54 | + |
| 55 | +struct ClenshawRecurrence{T, DATA} <: AbstractBlockMatrix{T} |
| 56 | + data::DATA |
| 57 | + x::T |
| 58 | + y::T |
| 59 | +end |
| 60 | + |
| 61 | +ClenshawRecurrence(sp, N, x, y) = ClenshawRecurrence(ClenshawRecurrenceData(sp,N), x, y) |
| 62 | + |
| 63 | +blocksizes(U::ClenshawRecurrence) = BlockSizes(1:(length(U.data.B̃ˣ)+1),1:(length(U.data.B̃ˣ)+1)) |
| 64 | + |
| 65 | +blockbandwidths(::ClenshawRecurrence) = (0,2) |
| 66 | +subblockbandwidths(::ClenshawRecurrence) = (0,2) |
| 67 | + |
| 68 | +@inline function getblock(U::ClenshawRecurrence{T}, K::Int, J::Int) where T |
| 69 | + J == K && return BandedMatrix(Eye{T}(K,K)) |
| 70 | + J == K+1 && return BandedMatrix(transpose(U.data.B[K] - U.x*U.data.B̃ˣ[K] - U.y*U.data.B̃ʸ[K])) |
| 71 | + J == K+2 && return BandedMatrix(transpose(U.data.C[K])) |
| 72 | + return BandedMatrix(Zeros{T}(K,J)) |
| 73 | +end |
| 74 | + |
| 75 | +@inline function getindex(block_arr::ClenshawRecurrence, blockindex::BlockIndex{2}) |
| 76 | + @inbounds block = getblock(block_arr, blockindex.I...) |
| 77 | + @boundscheck checkbounds(block, blockindex.α...) |
| 78 | + @inbounds v = block[blockindex.α...] |
| 79 | + return v |
| 80 | +end |
| 81 | + |
| 82 | +function getindex(U::ClenshawRecurrence, i::Int, j::Int) |
| 83 | + @boundscheck checkbounds(U, i...) |
| 84 | + @inbounds v = U[global2blockindex(blocksizes(U), (i, j))] |
| 85 | + return v |
| 86 | +end |
| 87 | + |
| 88 | +@time A = ClenshawRecurrence(JacobiTriangle(), 10, 0.1, 0.2); |
| 89 | +A.data.B[2] |
| 90 | +@time M = BandedBlockBandedMatrix(A) |
| 91 | + |
| 92 | +Jx_∞, Jy_∞ = jacobioperators(sp) |
| 93 | + Jx, Jy = BandedBlockBandedMatrix(Jx_∞[Block.(1:N), Block.(1:N-1)]'), |
| 94 | + BandedBlockBandedMatrix(Jy_∞[Block.(1:N), Block.(1:N-1)]') |
| 95 | + Ax, Ay = Jx[Block(K,K)], Jy[Block(K,K)] |
| 96 | +B̃ = [Matrix(A.data.B̃ˣ[2]) Matrix(A.data.B̃ʸ[2])] |
| 97 | + |
| 98 | +B̃ˣ = A.data.B̃ˣ |
| 99 | +B̃ʸ = A.data.B̃ʸ |
| 100 | + |
| 101 | +B̃ˣ[K],Ax , B̃ʸ[K],Ay |
| 102 | + |
| 103 | + |
| 104 | + |
| 105 | + |
| 106 | +f = Fun(Triangle(), randn(size(A,1))) |
| 107 | +# P= plan_evaluate(f) |
| 108 | +@time P(0.1,0.2) |
| 109 | + |
| 110 | +P = PseudoBlockArray([Fun(JacobiTriangle(), [zeros(k-1); 1])(0.1,0.2) for k=1:sum(1:10)], 1:10) |
| 111 | + |
| 112 | +A'*P |
| 113 | + |
| 114 | +N = 10 |
| 115 | +sp = JacobiTriangle() |
| 116 | + |
| 117 | +x,y = 0.1,0.2 |
| 118 | +Jx*P - (x*P)[1:45] |> norm |
| 119 | + |
| 120 | +Jy*P - (y*P)[1:45] |> norm |
| 121 | + |
| 122 | + |
| 123 | +A.data.B̃ˣ |
| 124 | + |
| 125 | + |
| 126 | +K = 2; B̃*[Matrix(Jx[Block(K,K+1)]); Matrix(Jy[Block(K,K+1)])] |
| 127 | + |
| 128 | + |
| 129 | +A.data.B[2] |
| 130 | +B̃ˣ[2] |
| 131 | +A.data.B̃ˣ[2]*Matrix(Jx[Block(K,K)]) + A.data.B̃ʸ[2] * Matrix(Jy[Block(K,K)]) |
| 132 | +B̃*[Matrix(Jx[Block(K,K)]); Matrix(Jy[Block(K,K)])] |
| 133 | +B̃*[Matrix(Jx[Block(K,K)]-x*I); Matrix(Jy[Block(K,K)] - y*I)] |
| 134 | + |
| 135 | +K |
| 136 | + |
| 137 | +B = A.data.B |
| 138 | + |
| 139 | +B[K] .= Mul(B̃ˣ[K] , Ax) |
| 140 | +B[K] .= Mul(B̃ʸ[K] , Ay) .+ B[K] |
| 141 | +(A')[Block(3,2)] |
| 142 | + |
| 143 | + |
| 144 | +A.data |
| 145 | + |
| 146 | +B̃*[Matrix(Jx[Block(K,K)]); Matrix(Jy[Block(K,K)])] |
| 147 | + |
| 148 | +B[K] |
| 149 | + |
| 150 | +B̃ˣ[K] * Ax + B̃ʸ[K] * Ay |
| 151 | +Matrix(M)'*P |
| 152 | + |
| 153 | +P'*f.coefficients |
| 154 | + |
| 155 | +P'*f.coefficients |
| 156 | + |
| 157 | +UpperTriangular(M)\f.coefficients |
| 158 | + |
| 159 | +v = randn(5050) |
| 160 | + |
| 161 | +@time UpperTriangular(M) \ v |
| 162 | + |
| 163 | +A[Block(3,4)] |
| 164 | + |
| 165 | + |
| 166 | + |
| 167 | + |
| 168 | +@time BandedBlockBandedMatrix(A) |
| 169 | + |
| 170 | +A'*P |
| 171 | + |
| 172 | +(A') |
| 173 | + |
| 174 | +x,y = 0.1,0.2 |
| 175 | + |
| 176 | +x*P[Block(1)] |
| 177 | + |
| 178 | +Ax*P[Block(1)] + Bx*P[Block(2)] |
| 179 | + |
| 180 | +Jx[Block.(1:5), Block.(1:5)]'*P |
| 181 | + |
| 182 | + |
| 183 | + |
| 184 | + |
| 185 | + |
| 186 | + |
| 187 | +sum(1:5) |
0 commit comments