Skip to content

Commit 96b40cd

Browse files
committed
AbsLaplacianPower -> abslaplacian
1 parent 6c01961 commit 96b40cd

File tree

3 files changed

+17
-17
lines changed

3 files changed

+17
-17
lines changed

src/MultivariateOrthogonalPolynomials.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -31,7 +31,7 @@ export MultivariateOrthogonalPolynomial, BivariateOrthogonalPolynomial,
3131
JacobiTriangle, TriangleWeight, WeightedTriangle,
3232
DunklXuDisk, DunklXuDiskWeight, WeightedDunklXuDisk,
3333
Zernike, ZernikeWeight, zerniker, zernikez,
34-
Laplacian, AbsLaplacianPower, AngularMomentum,
34+
AngularMomentum,
3535
RadialCoordinate, Weighted, Block, jacobimatrix, KronPolynomial, RectPolynomial,
3636
grammatrix, oneto
3737

src/disk.jl

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -280,9 +280,9 @@ end
280280
# Fractional Laplacian
281281
###
282282

283-
function *(L::AbsLaplacianPower, WZ::Weighted{<:Any,<:Zernike{<:Any}})
284-
@assert axes(L,1) == axes(WZ,1) && WZ.P.a == 0 && WZ.P.b == L.α
285-
WZ.P * Diagonal(WeightedZernikeFractionalLaplacianDiag{typeof(L.α)}(L.α))
283+
function abslaplacian(WZ::Weighted{<:Any,<:Zernike}, α; dims...)
284+
@assert WZ.P.a == 0 && WZ.P.b == α
285+
WZ.P * Diagonal(WeightedZernikeFractionalLaplacianDiag{typeof(α)}(α))
286286
end
287287

288288
# gives the entries for the (negative!) fractional Laplacian (-Δ)^(α) times (1-r^2)^α * Zernike(α)

test/test_disk.jl

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -327,7 +327,7 @@ end
327327
WZ = Weighted(Zernike(1.))
328328
Δ = Laplacian(axes(WZ,1))
329329
Δ_Z = Zernike(1) \* WZ)
330-
Δfrac = AbsLaplacianPower(axes(WZ,1),1.)
330+
Δfrac = AbsLaplacian(axes(WZ,1),1.)
331331
Δ_Zfrac = Zernike(1) \ (Δfrac * WZ)
332332
@test Δ_Z[1:100,1:100] -Δ_Zfrac[1:100,1:100]
333333
end
@@ -341,7 +341,7 @@ end
341341
xy = axes(WZ,1)
342342
x,y = first.(xy),last.(xy)
343343
# generate fractional Laplacian
344-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
344+
Δfrac = AbsLaplacian(axes(WZ,1),β)
345345
Δ_Zfrac = Z \ (Δfrac * WZ)
346346
# define function whose fractional Laplacian is known
347347
u = @. (1 - x^2 - y^2).^β
@@ -358,7 +358,7 @@ end
358358
xy = axes(WZ,1)
359359
x,y = first.(xy),last.(xy)
360360
# generate fractional Laplacian
361-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
361+
Δfrac = AbsLaplacian(axes(WZ,1),β)
362362
Δ_Zfrac = Z \ (Δfrac * WZ)
363363
# define function whose fractional Laplacian is known
364364
u = @. (1 - x^2 - y^2).^β
@@ -374,7 +374,7 @@ end
374374
xy = axes(WZ,1)
375375
x,y = first.(xy),last.(xy)
376376
# generate fractional Laplacian
377-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
377+
Δfrac = AbsLaplacian(axes(WZ,1),β)
378378
Δ_Zfrac = Z \ (Δfrac * WZ)
379379
# define function whose fractional Laplacian is known
380380
u = @. (1 - x^2 - y^2).^β
@@ -390,7 +390,7 @@ end
390390
xy = axes(WZ,1)
391391
x,y = first.(xy),last.(xy)
392392
# generate fractional Laplacian
393-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
393+
Δfrac = AbsLaplacian(axes(WZ,1),β)
394394
Δ_Zfrac = Z \ (Δfrac * WZ)
395395
# define function whose fractional Laplacian is known
396396
u = @. (1 - x^2 - y^2).^+1)
@@ -409,7 +409,7 @@ end
409409
xy = axes(WZ,1)
410410
x,y = first.(xy),last.(xy)
411411
# generate fractional Laplacian
412-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
412+
Δfrac = AbsLaplacian(axes(WZ,1),β)
413413
Δ_Zfrac = Z \ (Δfrac * WZ)
414414
# define function whose fractional Laplacian is known
415415
u = @. (1 - x^2 - y^2).^+1)
@@ -428,7 +428,7 @@ end
428428
xy = axes(WZ,1)
429429
x,y = first.(xy),last.(xy)
430430
# generate fractional Laplacian
431-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
431+
Δfrac = AbsLaplacian(axes(WZ,1),β)
432432
Δ_Zfrac = Z \ (Δfrac * WZ)
433433
# define function whose fractional Laplacian is known
434434
u = @. (1 - x^2 - y^2).^(β)*x
@@ -447,7 +447,7 @@ end
447447
xy = axes(WZ,1)
448448
x,y = first.(xy),last.(xy)
449449
# generate fractional Laplacian
450-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
450+
Δfrac = AbsLaplacian(axes(WZ,1),β)
451451
Δ_Zfrac = Z \ (Δfrac * WZ)
452452
# define function whose fractional Laplacian is known
453453
u = @. (1 - x^2 - y^2).^(β)*y
@@ -467,7 +467,7 @@ end
467467
xy = axes(WZ,1)
468468
x,y = first.(xy),last.(xy)
469469
# generate fractional Laplacian
470-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
470+
Δfrac = AbsLaplacian(axes(WZ,1),β)
471471
Δ_Zfrac = Z \ (Δfrac * WZ)
472472
# define function whose fractional Laplacian is known
473473
u = @. (1 - x^2 - y^2).^+1)*x
@@ -486,7 +486,7 @@ end
486486
xy = axes(WZ,1)
487487
x,y = first.(xy),last.(xy)
488488
# generate fractional Laplacian
489-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
489+
Δfrac = AbsLaplacian(axes(WZ,1),β)
490490
Δ_Zfrac = Z \ (Δfrac * WZ)
491491
# define function whose fractional Laplacian is known
492492
u = @. (1 - x^2 - y^2).^+1)*y
@@ -508,7 +508,7 @@ end
508508
xy = axes(WZ,1)
509509
x,y = first.(xy),last.(xy)
510510
# generate fractional Laplacian
511-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
511+
Δfrac = AbsLaplacian(axes(WZ,1),β)
512512
Δ_Zfrac = Z \ (Δfrac * WZ)
513513
# define function whose fractional Laplacian is known
514514
uexplicit = @. (1 - x^2 - y^2).^+1)
@@ -528,7 +528,7 @@ end
528528
xy = axes(WZ,1)
529529
x,y = first.(xy),last.(xy)
530530
# generate fractional Laplacian
531-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
531+
Δfrac = AbsLaplacian(axes(WZ,1),β)
532532
Δ_Zfrac = Z \ (Δfrac * WZ)
533533
# define function whose fractional Laplacian is known
534534
uexplicit = @. (1 - x^2 - y^2).^+1)*y
@@ -547,7 +547,7 @@ end
547547
xy = axes(WZ,1)
548548
x,y = first.(xy),last.(xy)
549549
# generate fractional Laplacian
550-
Δfrac = AbsLaplacianPower(axes(WZ,1),β)
550+
Δfrac = AbsLaplacian(axes(WZ,1),β)
551551
Δ_Zfrac = Z \ (Δfrac * WZ)
552552
# define function whose fractional Laplacian is known
553553
uexplicit = @. (1 - x^2 - y^2).^+1)*x

0 commit comments

Comments
 (0)