|
327 | 327 | WZ = Weighted(Zernike(1.))
|
328 | 328 | Δ = Laplacian(axes(WZ,1))
|
329 | 329 | Δ_Z = Zernike(1) \ (Δ * WZ)
|
330 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),1.) |
| 330 | + Δfrac = AbsLaplacian(axes(WZ,1),1.) |
331 | 331 | Δ_Zfrac = Zernike(1) \ (Δfrac * WZ)
|
332 | 332 | @test Δ_Z[1:100,1:100] ≈ -Δ_Zfrac[1:100,1:100]
|
333 | 333 | end
|
|
341 | 341 | xy = axes(WZ,1)
|
342 | 342 | x,y = first.(xy),last.(xy)
|
343 | 343 | # generate fractional Laplacian
|
344 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 344 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
345 | 345 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
346 | 346 | # define function whose fractional Laplacian is known
|
347 | 347 | u = @. (1 - x^2 - y^2).^β
|
|
358 | 358 | xy = axes(WZ,1)
|
359 | 359 | x,y = first.(xy),last.(xy)
|
360 | 360 | # generate fractional Laplacian
|
361 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 361 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
362 | 362 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
363 | 363 | # define function whose fractional Laplacian is known
|
364 | 364 | u = @. (1 - x^2 - y^2).^β
|
|
374 | 374 | xy = axes(WZ,1)
|
375 | 375 | x,y = first.(xy),last.(xy)
|
376 | 376 | # generate fractional Laplacian
|
377 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 377 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
378 | 378 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
379 | 379 | # define function whose fractional Laplacian is known
|
380 | 380 | u = @. (1 - x^2 - y^2).^β
|
|
390 | 390 | xy = axes(WZ,1)
|
391 | 391 | x,y = first.(xy),last.(xy)
|
392 | 392 | # generate fractional Laplacian
|
393 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 393 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
394 | 394 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
395 | 395 | # define function whose fractional Laplacian is known
|
396 | 396 | u = @. (1 - x^2 - y^2).^(β+1)
|
|
409 | 409 | xy = axes(WZ,1)
|
410 | 410 | x,y = first.(xy),last.(xy)
|
411 | 411 | # generate fractional Laplacian
|
412 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 412 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
413 | 413 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
414 | 414 | # define function whose fractional Laplacian is known
|
415 | 415 | u = @. (1 - x^2 - y^2).^(β+1)
|
|
428 | 428 | xy = axes(WZ,1)
|
429 | 429 | x,y = first.(xy),last.(xy)
|
430 | 430 | # generate fractional Laplacian
|
431 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 431 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
432 | 432 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
433 | 433 | # define function whose fractional Laplacian is known
|
434 | 434 | u = @. (1 - x^2 - y^2).^(β)*x
|
|
447 | 447 | xy = axes(WZ,1)
|
448 | 448 | x,y = first.(xy),last.(xy)
|
449 | 449 | # generate fractional Laplacian
|
450 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 450 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
451 | 451 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
452 | 452 | # define function whose fractional Laplacian is known
|
453 | 453 | u = @. (1 - x^2 - y^2).^(β)*y
|
|
467 | 467 | xy = axes(WZ,1)
|
468 | 468 | x,y = first.(xy),last.(xy)
|
469 | 469 | # generate fractional Laplacian
|
470 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 470 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
471 | 471 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
472 | 472 | # define function whose fractional Laplacian is known
|
473 | 473 | u = @. (1 - x^2 - y^2).^(β+1)*x
|
|
486 | 486 | xy = axes(WZ,1)
|
487 | 487 | x,y = first.(xy),last.(xy)
|
488 | 488 | # generate fractional Laplacian
|
489 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 489 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
490 | 490 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
491 | 491 | # define function whose fractional Laplacian is known
|
492 | 492 | u = @. (1 - x^2 - y^2).^(β+1)*y
|
|
508 | 508 | xy = axes(WZ,1)
|
509 | 509 | x,y = first.(xy),last.(xy)
|
510 | 510 | # generate fractional Laplacian
|
511 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 511 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
512 | 512 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
513 | 513 | # define function whose fractional Laplacian is known
|
514 | 514 | uexplicit = @. (1 - x^2 - y^2).^(β+1)
|
|
528 | 528 | xy = axes(WZ,1)
|
529 | 529 | x,y = first.(xy),last.(xy)
|
530 | 530 | # generate fractional Laplacian
|
531 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 531 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
532 | 532 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
533 | 533 | # define function whose fractional Laplacian is known
|
534 | 534 | uexplicit = @. (1 - x^2 - y^2).^(β+1)*y
|
|
547 | 547 | xy = axes(WZ,1)
|
548 | 548 | x,y = first.(xy),last.(xy)
|
549 | 549 | # generate fractional Laplacian
|
550 |
| - Δfrac = AbsLaplacianPower(axes(WZ,1),β) |
| 550 | + Δfrac = AbsLaplacian(axes(WZ,1),β) |
551 | 551 | Δ_Zfrac = Z \ (Δfrac * WZ)
|
552 | 552 | # define function whose fractional Laplacian is known
|
553 | 553 | uexplicit = @. (1 - x^2 - y^2).^(β+1)*x
|
|
0 commit comments