@@ -6,6 +6,7 @@ import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, Ang
6
6
@testset " basics" begin
7
7
P = DunklXuDisk ()
8
8
@test copy (P) ≡ P
9
+ @test P ≠ DunklXuDisk (0.123 )
9
10
10
11
xy = axes (P,1 )
11
12
x,y = first .(xy),last .(xy)
@@ -32,7 +33,7 @@ import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, Ang
32
33
X = P \ (x .* P)
33
34
Y = P \ (y .* P)
34
35
35
- @test (L* R)[Block .(1 : N), Block .(1 : N)] ≈ (I - X^ 2 - Y^ 2 )[Block .(1 : N), Block .(1 : N)]
36
+ @test (L * R)[Block .(1 : N), Block .(1 : N)] ≈ (I - X^ 2 - Y^ 2 )[Block .(1 : N), Block .(1 : N)]
36
37
37
38
∂x = PartialDerivative {1} (axes (P, 1 ))
38
39
∂y = PartialDerivative {2} (axes (P, 1 ))
@@ -43,7 +44,7 @@ import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, Ang
43
44
Mx = Q \ (x .* Q)
44
45
My = Q \ (y .* Q)
45
46
46
- A = Mx[ Block .( 1 : N), Block .( 1 : N + 1 )] * Dy[ Block .( 1 : N + 1 ), Block .( 1 : N)] - My[ Block .( 1 : N), Block .( 1 : N + 1 )] * Dx [Block .(1 : N+ 1 ), Block .(1 : N)]
47
+ A = (Mx * Dy - My * Dx) [Block .(1 : N), Block .(1 : N)]
47
48
48
49
B = (Q \ P)[Block .(1 : N), Block .(1 : N)]
49
50
@@ -55,11 +56,15 @@ import MultivariateOrthogonalPolynomials: dunklxu_raising, dunklxu_lowering, Ang
55
56
56
57
@test λ ≈ im* imag (λ)
57
58
58
- ∂θ = AngularMomentum (P)
59
+ ∂θ = AngularMomentum (axes (P, 1 ))
60
+ @test axes (∂θ) == (axes (P, 1 ), axes (P, 1 ))
61
+ @test ∂θ == AngularMomentum (axes (Q, 1 ))
62
+ @test copy (∂θ) ≡ ∂θ
59
63
60
64
A = P \ (∂θ * P)
61
65
62
66
@test A[Block .(1 : N), Block .(1 : N)] ≈ C
67
+ @test (A^ 2 )[Block .(1 : N), Block .(1 : N)] ≈ A[Block .(1 : N), Block .(1 : N)]^ 2
63
68
64
69
∂x = PartialDerivative {1} (axes (WQ, 1 ))
65
70
∂y = PartialDerivative {2} (axes (WQ, 1 ))
0 commit comments