@@ -18,6 +18,24 @@ import MultivariateOrthogonalPolynomials: rectspace, totensor
18
18
19
19
f = Fun ((t,x,y) -> exp (cos (t* x)* y), DuffyCone ())
20
20
@test f (sqrt (0.1 ^ 2 + 0.2 ^ 2 ),0.1 ,0.2 ) ≈ exp (cos (sqrt (0.1 ^ 2 + 0.2 ^ 2 )* 0.1 )* 0.2 )
21
+
22
+ m,ℓ = (1 ,1 )
23
+ f = (txy) -> ((t,x,y) = txy; θ = atan (y,x); Fun (NormalizedJacobi (0 ,2 m+ 1 ,Segment (1 ,0 )),[zeros (ℓ);1 ])(t) * 2 ^ m * t^ m * cos (m* θ))
24
+ g = Fun (f, DuffyCone ())
25
+ t,x,y = sqrt (0.1 ^ 2 + 0.2 ^ 2 ),0.1 ,0.2
26
+ @test g (t,x,y) ≈ f ((t,x,y))
27
+ end
28
+
29
+ @testset " LegendreConePlan" begin
30
+ m,ℓ = (1 ,1 )
31
+ f = (txy) -> ((t,x,y) = txy; θ = atan (y,x); Fun (NormalizedJacobi (0 ,2 m+ 1 ,Segment (1 ,0 )),[zeros (ℓ);1 ])(t) * 2 ^ m * t^ m * cos (m* θ))
32
+ p = points (LegendreCone (), 10 )
33
+ P = plan_transform (LegendreCone (), f .(p))
34
+ @test P. duffyplan* f .(p) ≈ Fun (f, DuffyCone ()). coefficients[1 : 12 ]
35
+ coefficients (g, LegendreCone ())
36
+ g = Fun (f, LegendreCone (), 20 )
37
+ t,x,y = sqrt (0.1 ^ 2 + 0.2 ^ 2 ),0.1 ,0.2
38
+ @test g (t,x,y) ≈ f ((t,x,y))
21
39
end
22
40
23
41
@testset " Legendre<>DuffyCone" begin
0 commit comments