|
| 1 | +include("gradient.jl") |
| 2 | + |
| 3 | +using BandedMatrices |
| 4 | + |
| 5 | +import BandedMatrices: BandedQ |
| 6 | + |
| 7 | +# Store QR factorizations required to apply the Helmholtz-Hodge decomposition. |
| 8 | +struct HelmholtzHodge{T} |
| 9 | + Q::Vector{BandedQ{T}} |
| 10 | + R::Vector{BandedMatrix{T, Matrix{T}}} |
| 11 | + X::Vector{T} |
| 12 | +end |
| 13 | + |
| 14 | +function HelmholtzHodge(::Type{T}, N::Int) where T |
| 15 | + Q = Vector{BandedQ{T}}(undef, N) |
| 16 | + R = Vector{BandedMatrix{T, Matrix{T}}}(undef, N) |
| 17 | + for m = 1:N |
| 18 | + Q[m], R[m] = qr(helmholtzhodgeconversion(T, N, m)) |
| 19 | + end |
| 20 | + HelmholtzHodge(Q, R, zeros(T, 2N+2)) |
| 21 | +end |
| 22 | + |
| 23 | +function helmholtzhodgeconversion(::Type{T}, N::Int, m::Int) where T |
| 24 | + A = BandedMatrix(Zeros{T}(2N+4-2m, 2N+2-2m), (2, 2)) |
| 25 | + for ℓ = 1:N+1-m |
| 26 | + A[2ℓ, 2ℓ-1] = m |
| 27 | + A[2ℓ-1, 2ℓ] = m |
| 28 | + cst = (m+ℓ-1)*sqrt(T(ℓ*(ℓ+2m))/T((2ℓ+2m-1)*(2ℓ+2m+1))) |
| 29 | + A[2ℓ+2, 2ℓ] = cst |
| 30 | + A[2ℓ+1, 2ℓ-1] = cst |
| 31 | + end |
| 32 | + for ℓ = 1:N-m |
| 33 | + cst = -(m+ℓ+1)*sqrt(T(ℓ*(ℓ+2m))/T((2ℓ+2m-1)*(2ℓ+2m+1))) |
| 34 | + A[2ℓ-1, 2ℓ+1] = cst |
| 35 | + A[2ℓ, 2ℓ+2] = cst |
| 36 | + end |
| 37 | + A |
| 38 | +end |
| 39 | + |
| 40 | +# This function works in-place on the data stored in the factorization. |
| 41 | +function solvehelmholtzhodge!(HH::HelmholtzHodge{T}, m::Int) where T |
| 42 | + Q = HH.Q[m] |
| 43 | + R = HH.R[m] |
| 44 | + X = HH.X |
| 45 | + |
| 46 | + # Step 1: apply Q' |
| 47 | + |
| 48 | + H=Q.H |
| 49 | + m=Q.m |
| 50 | + |
| 51 | + M=size(H,1) |
| 52 | + x=pointer(X) |
| 53 | + h=pointer(H) |
| 54 | + st=stride(H,2) |
| 55 | + sz=sizeof(T) |
| 56 | + |
| 57 | + for k=1:min(size(H,2),m-M+1) |
| 58 | + wp=h+sz*st*(k-1) |
| 59 | + xp=x+sz*(k-1) |
| 60 | + |
| 61 | + dt=BandedMatrices.dot(M,wp,1,xp,1) |
| 62 | + BandedMatrices.axpy!(M,-2*dt,wp,1,xp,1) |
| 63 | + end |
| 64 | + |
| 65 | + for k=m-M+2:size(H,2) |
| 66 | + p=k-m+M-1 |
| 67 | + |
| 68 | + wp=h+sz*st*(k-1) |
| 69 | + xp=x+sz*(k-1) |
| 70 | + |
| 71 | + dt=BandedMatrices.dot(M-p,wp,1,xp,1) |
| 72 | + BandedMatrices.axpy!(M-p,-2*dt,wp,1,xp,1) |
| 73 | + end |
| 74 | + |
| 75 | + # Step 2: backsolve with (square) R |
| 76 | + |
| 77 | + hhdtbsv!('U', 'N', 'N', size(R.data, 2), R.u, pointer(R.data), size(R.data, 1), pointer(X), 1) |
| 78 | + |
| 79 | + X |
| 80 | +end |
| 81 | + |
| 82 | + |
| 83 | +function helmholtzhodge!(HH::HelmholtzHodge{T}, U1, U2, V1, V2) where T |
| 84 | + N, M = size(V1) |
| 85 | + |
| 86 | + # U1 is for e_theta and U2 is for e_phi. |
| 87 | + # The first columns are easy. |
| 88 | + U1[1, 1] = 0 |
| 89 | + U2[1, 1] = 0 |
| 90 | + @inbounds @simd for ℓ = 1:N-1 |
| 91 | + U1[ℓ+1, 1] = -V1[ℓ, 1]/sqrt(T(ℓ*(ℓ+1))) |
| 92 | + U2[ℓ+1, 1] = -V2[ℓ, 1]/sqrt(T(ℓ*(ℓ+1))) |
| 93 | + end |
| 94 | + |
| 95 | + # First, we multiply by sin(θ), which can be done by incrementing the order P_ℓ^{m-1} ↗ P_ℓ^m. |
| 96 | + @inbounds for m = 1:M÷2 |
| 97 | + @simd for ℓ = 1:N-1-m |
| 98 | + aℓ = sqrt(T((ℓ+2m-2)*(ℓ+2m-1))/T((2ℓ+2m-3)*(2ℓ+2m-1))) |
| 99 | + bℓ = -sqrt(T(ℓ*(ℓ+1))/T((2ℓ+2m-1)*(2ℓ+2m+1))) |
| 100 | + V1[ℓ, 2m] = aℓ*V1[ℓ, 2m] + bℓ*V1[ℓ+2, 2m] |
| 101 | + V1[ℓ, 2m+1] = aℓ*V1[ℓ, 2m+1] + bℓ*V1[ℓ+2, 2m+1] |
| 102 | + V2[ℓ, 2m] = aℓ*V2[ℓ, 2m] + bℓ*V2[ℓ+2, 2m] |
| 103 | + V2[ℓ, 2m+1] = aℓ*V2[ℓ, 2m+1] + bℓ*V2[ℓ+2, 2m+1] |
| 104 | + end |
| 105 | + ℓ = N-m |
| 106 | + if ℓ > 0 |
| 107 | + aℓ = sqrt(T((ℓ+2m-2)*(ℓ+2m-1))/T((2ℓ+2m-3)*(2ℓ+2m-1))) |
| 108 | + V1[ℓ, 2m] = aℓ*V1[ℓ, 2m] |
| 109 | + V1[ℓ, 2m+1] = aℓ*V1[ℓ, 2m+1] |
| 110 | + V2[ℓ, 2m] = aℓ*V2[ℓ, 2m] |
| 111 | + V2[ℓ, 2m+1] = aℓ*V2[ℓ, 2m+1] |
| 112 | + end |
| 113 | + ℓ = N+1-m |
| 114 | + aℓ = sqrt(T((ℓ+2m-2)*(ℓ+2m-1))/T((2ℓ+2m-3)*(2ℓ+2m-1))) |
| 115 | + V1[ℓ, 2m] = aℓ*V1[ℓ, 2m] |
| 116 | + V1[ℓ, 2m+1] = aℓ*V1[ℓ, 2m+1] |
| 117 | + V2[ℓ, 2m] = aℓ*V2[ℓ, 2m] |
| 118 | + V2[ℓ, 2m+1] = aℓ*V2[ℓ, 2m+1] |
| 119 | + end |
| 120 | + |
| 121 | + # Next, we solve the banded linear systems. |
| 122 | + for m = 1:M÷2 |
| 123 | + readin1!(HH.X, V1, V2, N, m) |
| 124 | + solvehelmholtzhodge!(HH, m) |
| 125 | + writeout1!(HH.X, U1, U2, N, m) |
| 126 | + readin2!(HH.X, V1, V2, N, m) |
| 127 | + solvehelmholtzhodge!(HH, m) |
| 128 | + writeout2!(HH.X, U1, U2, N, m) |
| 129 | + end |
| 130 | + |
| 131 | + U1 |
| 132 | +end |
| 133 | + |
| 134 | +function readin1!(X, V1, V2, N, m) |
| 135 | + X[1] = V1[1, 2m] |
| 136 | + X[2N+2-2m] = V2[N+1-m, 2m+1] |
| 137 | + @inbounds for ℓ = 1:N-m |
| 138 | + X[2ℓ] = V2[ℓ, 2m+1] |
| 139 | + X[2ℓ+1] = V1[ℓ+1, 2m] |
| 140 | + end |
| 141 | + X[2N+3-2m] = X[2N+4-2m] = 0 |
| 142 | +end |
| 143 | + |
| 144 | +function readin2!(X, V1, V2, N, m) |
| 145 | + X[1] = V1[1, 2m+1] |
| 146 | + X[2N+2-2m] = -V2[N+1-m, 2m] |
| 147 | + @inbounds for ℓ = 1:N-m |
| 148 | + X[2ℓ] = -V2[ℓ, 2m] |
| 149 | + X[2ℓ+1] = V1[ℓ+1, 2m+1] |
| 150 | + end |
| 151 | + X[2N+3-2m] = X[2N+4-2m] = 0 |
| 152 | +end |
| 153 | + |
| 154 | +function writeout1!(X, U1, U2, N, m) |
| 155 | + U1[1, 2m] = X[1] |
| 156 | + U2[1, 2m+1] = X[N+1-m] |
| 157 | + @inbounds for ℓ = 1:N-1-m |
| 158 | + U1[ℓ+1, 2m] = X[2ℓ+1] |
| 159 | + U2[ℓ, 2m+1] = X[2ℓ] |
| 160 | + end |
| 161 | + U2[N-m, 2m+1] = X[2N-2m] |
| 162 | +end |
| 163 | + |
| 164 | +function writeout2!(X, U1, U2, N, m) |
| 165 | + U1[1, 2m+1] = X[1] |
| 166 | + U2[1, 2m] = X[N+1-m] |
| 167 | + @inbounds for ℓ = 1:N-1-m |
| 168 | + U1[ℓ+1, 2m+1] = X[2ℓ+1] |
| 169 | + U2[ℓ, 2m] = -X[2ℓ] |
| 170 | + end |
| 171 | + U2[N-m, 2m] = -X[2N-2m] |
| 172 | +end |
| 173 | + |
| 174 | +using LinearAlgebra |
| 175 | +import LinearAlgebra: BlasInt |
| 176 | +import LinearAlgebra.BLAS: libblas, @blasfunc |
| 177 | + |
| 178 | +for (fname, elty) in ((:dtbsv_,:Float64), |
| 179 | + (:stbsv_,:Float32), |
| 180 | + (:ztbsv_,:ComplexF64), |
| 181 | + (:ctbsv_,:ComplexF32)) |
| 182 | + @eval begin |
| 183 | + function hhdtbsv!(uplo::Char, trans::Char, diag::Char, |
| 184 | + n::Int, k::Int, A::Ptr{$elty}, lda::Int, |
| 185 | + x::Ptr{$elty}, incx::Int) |
| 186 | + ccall((@blasfunc($fname), libblas), Nothing, |
| 187 | + (Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, |
| 188 | + Ref{BlasInt}, Ref{BlasInt}, |
| 189 | + Ptr{$elty}, Ref{BlasInt}, |
| 190 | + Ptr{$elty}, Ref{BlasInt}), |
| 191 | + uplo, trans, diag, |
| 192 | + n, k, |
| 193 | + A, lda, |
| 194 | + x, incx) |
| 195 | + x |
| 196 | + end |
| 197 | + end |
| 198 | +end |
0 commit comments