|
| 1 | +using ApproxFun, MultivariateOrthogonalPolynomials |
| 2 | +import ApproxFun: Vec, PiecewiseSegment, ZeroOperator |
| 3 | + import MultivariateOrthogonalPolynomials: DirichletTriangle |
| 4 | + |
| 5 | +d = [Triangle(Vec(0,0), Vec(1,0), Vec(0,1)) , Triangle(Vec(1,1),Vec(1,0),Vec(0,1)) , |
| 6 | + Triangle(Vec(1,1),Vec(0,1),Vec(0,2)) , Triangle(Vec(1,2),Vec(0,2),Vec(1,1)) , |
| 7 | + Triangle(Vec(1,0), Vec(2,0), Vec(1,1)) , Triangle(Vec(2,1), Vec(1,1), Vec(2,0))] |
| 8 | + |
| 9 | +∂d = components(PiecewiseSegment([Vec(0,0), Vec(1,0), Vec(2,0), Vec(2,1), Vec(1,1), Vec(1,2), Vec(0,2), Vec(0,1), Vec(0,0)])) |
| 10 | +ιd = [Segment(Vec(0,1),Vec(1,0)), Segment(Vec(0,1), Vec(1,1)), Segment(Vec(1,1), Vec(2,0)), |
| 11 | + Segment(Vec(1,0), Vec(1,1)), Segment(Vec(0,2), Vec(1,1))] |
| 12 | + |
| 13 | +length(∂d) |
| 14 | + |
| 15 | +ds = vcat(fill.(DirichletTriangle{1,1,1}.(d),3)...) # repeat each triangle 3 times |
| 16 | +rs = [Legendre.(∂d); fill.(Legendre.(ιd),2)...; fill.(JacobiTriangle.(d),3)...] |
| 17 | + |
| 18 | + |
| 19 | +N,M = length(rs), length(ds) |
| 20 | + A = Matrix{Operator{Float64}}(undef, N,M) |
| 21 | + for K=1:N, J=1:M # fill with zeros |
| 22 | + A[K,J] = ZeroOperator(ds[J],rs[K]) |
| 23 | + end |
| 24 | + # add boundary conditions |
| 25 | + for K = 1:length(∂d) |
| 26 | + for J = 1:length(d) |
| 27 | + if |
| 28 | + A[K,J] = I : ds[J] → rs[K] |
| 29 | + end |
| 30 | + |
| 31 | + |
| 32 | +∂d[1] ⊆ d[1] |
| 33 | + |
| 34 | +rs[3] |
| 35 | + |
| 36 | + |
| 37 | + |
| 38 | +typeof(components(d)) |
| 39 | + |
| 40 | + |
| 41 | + |
| 42 | + |
| 43 | +length(ιd) |
| 44 | + |
| 45 | + |
| 46 | + |
| 47 | + |
| 48 | +Vec{2,Float64} |
| 49 | +Segment(Vec(0,0), Vec(1.0,0)) |> typeof |
| 50 | + |
| 51 | + |
| 52 | + |
| 53 | +import Makie |
| 54 | + |
| 55 | + |
| 56 | + |
| 57 | +S = DirichletTriangle{1,1,1}.(components(d)) |
| 58 | + |
| 59 | +C1 = I : S[1] → Legendre(Segment(Vec(0,0),Vec(1,0))) |
| 60 | +C2 = I : S[1] → Legendre(Segment(Vec(1,0),Vec(0,0))) |
| 61 | + |
| 62 | +a = Legendre(Segment(Vec(0,0),Vec(1,0))) |
| 63 | +b = Legendre(Segment(Vec(1,0),Vec(0,0))) |
| 64 | + |
| 65 | +@which Conversion(a,b) |
| 66 | + |
| 67 | + |
| 68 | + |
| 69 | + |
| 70 | +DirichletTriangle{0,1,1}(d[1]) |
| 71 | + |
| 72 | +2 |
| 73 | +C1.op.op.ops |
| 74 | + |
| 75 | + |
| 76 | + |
| 77 | + |
| 78 | +C2.op.op.ops |
| 79 | + |
| 80 | +C1 == C2 |
| 81 | + |
| 82 | +C1[1:20,1:20] == C2[1:20,1:20] |
| 83 | + |
| 84 | +Legendre(Segment(Vec(0,0),Vec(1,0))) |
| 85 | + |
| 86 | +∂d = PiecewiseSegment([Vec(0.,0), Vec(1.,0), Vec(1,1), Vec(1,2), Vec(0,1), Vec(-1,1.5), Vec(0,0)]) |
| 87 | + |
| 88 | +o = Fun.(S, Ref([1.0])) |
| 89 | + |
| 90 | +o[1] |
0 commit comments