|
| 1 | +using ApproxFun, MultivariateOrthogonalPolynomials, BlockArrays, SpecialFunctions, FillArrays, Plots |
| 2 | +import ApproxFun: blockbandwidths, Vec, PiecewiseSegment |
| 3 | +import MultivariateOrthogonalPolynomials: DirichletTriangle |
| 4 | + |
| 5 | + |
| 6 | + |
| 7 | +####### |
| 8 | +# Example 1 Poisson |
| 9 | +####### |
| 10 | + |
| 11 | +S = TriangleWeight(1,1,1,JacobiTriangle(1,1,1)) |
| 12 | +Δ = Laplacian(S) |
| 13 | + |
| 14 | +N = 500 |
| 15 | +M = sparse(Δ[Block.(1:N), Block.(1:N)]) |
| 16 | +F = lu(M) |
| 17 | +u_1 = F \ pad(coefficients(Fun(1, rangespace(Δ))), size(M,1)) |
| 18 | +u_2 = F \ pad(coefficients(Fun((x,y) -> x^2 + y^2, rangespace(Δ))), size(M,1)) |
| 19 | +u_3 = F \ pad(coefficients(Fun((x,y) -> x*y*(1-x-y), rangespace(Δ))), size(M,1)) |
| 20 | +u_4 = F \ pad(coefficients(Fun((x,y) -> x*y*(1-x-y) *cos(300x*y), rangespace(Δ))), size(M,1)) |
| 21 | +u_5 = F \ pad(coefficients(Fun((x,y) -> exp(-25((x-0.2)^2+(y-0.2)^2)), rangespace(Δ))), size(M,1)) |
| 22 | + |
| 23 | +gr() |
| 24 | + |
| 25 | +plot(abs.(u_1)[1:10_000]; yscale=:log10, xscale=:log10, label="1") |
| 26 | +plot!(abs.(u_2)[1:10_000]; yscale=:log10, xscale=:log10, label="x^2 + y^2") |
| 27 | +plot!(abs.(u_3)[1:10_000]; yscale=:log10, xscale=:log10, label="xy(1-x-y)") |
| 28 | +plot!(abs.(u_4)[1:10_000]; yscale=:log10, xscale=:log10, label="xy(1-x-y)cos(300xy)") |
| 29 | + |
| 30 | +####### |
| 31 | +# Example 2 Variable coefficient Helmholts |
| 32 | +###### |
| 33 | + |
| 34 | +S = TriangleWeight(1,1,1,JacobiTriangle(1,1,1)) |
| 35 | +x,y = Fun(Triangle()) |
| 36 | + |
| 37 | +V = 1-(3*(x-1)^4 + 5*y^4) |
| 38 | + |
| 39 | + |
| 40 | +f = Fun((x,y) -> x*y*exp(x) , JacobiTriangle(1.,1.,1.)) |
| 41 | + |
| 42 | +k = 100 |
| 43 | +L = Laplacian(S) + (k^2 * V) |
| 44 | +N = ceil(Int,2k) |
| 45 | +@time M̃ = L[Block.(1:N), Block.(1:N)] |
| 46 | +@time M = sparse(M̃) |
| 47 | +@time F = lu(M) |
| 48 | +@time u_c = F \ pad(coefficients(f), size(M,1)) |
| 49 | +u = Fun(domainspace(L), u_c) |
| 50 | + |
| 51 | + |
| 52 | +####### |
| 53 | +# Example 3 Bi-harmonic |
| 54 | +####### |
| 55 | + |
| 56 | +S = TriangleWeight(2,2,2, JacobiTriangle(2,2,2)) |
| 57 | +Δ = Laplacian(S) |
| 58 | +L = Δ^2 |
| 59 | + |
| 60 | +N = 1001 |
| 61 | +M = sparse(L[Block.(1:N), Block.(1:N)]) |
| 62 | +F = lu(M) |
| 63 | + |
| 64 | + |
| 65 | +u_1 = F \ pad(coefficients(Fun(1, rangespace(L))), size(M,1)) |
| 66 | +u_2 = F \ pad(coefficients(Fun((x,y) -> x^2 + y^2, rangespace(L))), size(M,1)) |
| 67 | +u_3 = F \ pad(coefficients(Fun((x,y) -> x*y*(1-x-y), rangespace(L))), size(M,1)) |
| 68 | +# u_4 = F \ pad(coefficients(Fun((x,y) -> x*y*(1-x-y) *cos(300x*y), rangespace(L))), size(M,1)) |
| 69 | +u_4 = F \ pad(coefficients(Fun((x,y) -> exp(-25((x-0.2)^2+(y-0.2)^2)), rangespace(L))), size(M,1)) |
| 70 | + |
| 71 | + |
| 72 | +bnrms = u -> [norm(PseudoBlockArray(u, 1:N)[Block(K)],Inf) for K=1:N] |
| 73 | + |
| 74 | +plot(bnrms(u_1); xscale=:log10, yscale=:log10, linewidth=3, label="1") |
| 75 | +plot!(bnrms(u_2); xscale=:log10, yscale=:log10, linewidth=3, linestyle=:dot, label="x^2 + y^2") |
| 76 | +plot!(bnrms(u_3); xscale=:log10, yscale=:log10, linewidth=3, linestyle=:dot, label="x^2 + y^2") |
| 77 | +plot!(bnrms(u_4); xscale=:log10, yscale=:log10, linewidth=3, linestyle=:dot, label="x^2 + y^2") |
| 78 | + |
| 79 | + |
| 80 | +plot(abs.(coefficients(Fun((x,y) -> exp(-25((x-0.2)^2+(y-0.2)^2)), rangespace(L)))); scale=:log10, yscale=:log10) |
| 81 | + |
| 82 | +####### |
| 83 | +# Example 4 Laplace's equation |
| 84 | +####### |
| 85 | + |
| 86 | +S = DirichletTriangle{1,1,1}() |
| 87 | +B = Dirichlet() : S |
| 88 | +Δ = Laplacian() : S |
| 89 | +# L = [B; Δ] |
| 90 | + |
| 91 | +fs = ((x,y) -> exp(x)*cos(y), |
| 92 | + (x,y) -> x^2, |
| 93 | + (x,y) -> x^3*(1-x)^3*(1-y)^3, |
| 94 | + (x,y) -> x^3*(1-x)^3*(1-y)^3 * cos(100x*y)) |
| 95 | + |
| 96 | +N = 1000; |
| 97 | +@time BM = sparse(B[Block.(1:N), Block.(1:N)]); |
| 98 | +@time ΔM = sparse(Δ[Block.(1:N), Block.(1:N)]); |
| 99 | +@time M = [BM; ΔM]; |
| 100 | +M = [sparse(I, size(M,1), 2) M] # add tau term |
| 101 | +@time F = factorize(M); |
| 102 | + |
| 103 | +# RHS |
| 104 | +k = 1 |
| 105 | +∂u = Fun(fs[k], rangespace(B)) |
| 106 | +r = pad(coefficients(∂u, rangespace(B)), size(Fs[N],1)) |
| 107 | +@time u_cfs = F \ r |
| 108 | + |
| 109 | + |
| 110 | +####### |
| 111 | +# Example 5 Transport equation |
| 112 | +####### |
| 113 | + |
| 114 | +S = DirichletTriangle{0,1,0}() |
| 115 | +∂S = Legendre(Segment(Vec(0.0,0), Vec(1.0,0))) |
| 116 | +B = I : S → ∂S |
| 117 | + |
| 118 | +Dx = Derivative([1,0]) : S |
| 119 | +Dt = Derivative([0,1]) : S |
| 120 | + |
| 121 | + |
| 122 | +x,_ = Fun(∂S) |
| 123 | +u₀ = x*(1-x)*exp(x) |
| 124 | + |
| 125 | +# u_t = u_x |
| 126 | +L = [B; Dx - Dt] |
| 127 | +N = 20; M = sparse(L[Block.(1:N), Block.(1:N)]); |
| 128 | +u_c = M \ pad(coefficients([u₀; 0], rangespace(L)), size(M,1)) |
| 129 | +u = Fun(domainspace(L), u_c) |
| 130 | + |
| 131 | +# 0.5u_t = u_x |
| 132 | +S = DirichletTriangle{0,1,1}() |
| 133 | +∂S = Legendre(Segment(Vec(0.0,0), Vec(1.0,0))) , Legendre(Segment(Vec(0.0,1.0),Vec(1.0,0))) |
| 134 | +B_x = I : S → ∂S[1] |
| 135 | +B_z = I : S → ∂S[2] |
| 136 | +Dx = Derivative([1,0]) : S |
| 137 | +Dt = Derivative([0,1]) : S |
| 138 | + |
| 139 | +L = [B_x; B_z; Dx - 0.5Dt] |
| 140 | +N = 100; M = sparse(L[Block.(1:N), Block.(1:N)]) |
| 141 | +u₀_x = Fun((x,_) -> x*exp(x-1), rangespace(B_x)) |
| 142 | +u₀_z = Fun((x,y) -> (1-y), rangespace(B_z)) |
| 143 | +u_c = M \ pad(coefficients([u₀_x; u₀_z; 0], rangespace(L)), size(M,1)) |
| 144 | +u = Fun(domainspace(L), u_c) |
| 145 | + |
| 146 | +# u_t + u_x = 0 |
| 147 | +S = DirichletTriangle{1,1,0}() |
| 148 | +∂S = Legendre(Segment(Vec(0.0,0), Vec(1.0,0))) , Legendre(Segment(Vec(0.0,0.0),Vec(0.0,1.0))) |
| 149 | +B_x = I : S → ∂S[1] |
| 150 | +B_y = I : S → ∂S[2] |
| 151 | +Dx = Derivative([1,0]) : S |
| 152 | +Dt = Derivative([0,1]) : S |
| 153 | + |
| 154 | +L = [B_x; B_y; Dt + Dx] |
| 155 | +N = 100; M = sparse(L[Block.(1:N), Block.(1:N)]) |
| 156 | +u₀_x = Fun((x,_) -> (1-x)*exp(x), rangespace(B_x)) |
| 157 | +u₀_y = Fun((x,y) -> (1-y), rangespace(B_y)) |
| 158 | + |
| 159 | +u_c = M \ pad(coefficients([u₀_x; u₀_y; 0], rangespace(L)), size(M,1)) |
| 160 | +u = Fun(domainspace(L), u_c) |
| 161 | + |
| 162 | + |
| 163 | +####### |
| 164 | +# Example 7 Helmholtz in a polygon |
| 165 | +####### |
| 166 | +d = Triangle() ∪ Triangle(Vec(1,1),Vec(1,0),Vec(0,1)) ∪ |
| 167 | + Triangle(Vec(1,1),Vec(0,1),Vec(0,2)) ∪ |
| 168 | + Triangle(Vec(0,0),Vec(0,1),Vec(-1,1.5)) |
| 169 | + |
| 170 | + |
| 171 | +f = Fun((x,y) -> cos(x*sin(y)), d) |
| 172 | + |
| 173 | +∂d = PiecewiseSegment([Vec(0.,0), Vec(1.,0), Vec(1,1), Vec(0,2), Vec(0,1), Vec(-1,1.5), Vec(0,0)]) |
| 174 | + |
| 175 | +S = DirichletTriangle{1,1,1}.(components(d)) |
| 176 | +∂S = Legendre.(components(∂d)) |
| 177 | + |
| 178 | +∂S12 = Legendre(Segment(Vec(1.,0),Vec(0,1))) |
| 179 | +∂S23 = Legendre(Segment(Vec(1.,1),Vec(0,1))) |
| 180 | +∂S14 = Legendre(Segment(Vec(0.,0),Vec(0,1))) |
| 181 | + |
| 182 | +Dx = Derivative([1,0]) |
| 183 | +Dy = Derivative([0,1]) |
| 184 | + |
| 185 | +k = 20 |
| 186 | + |
| 187 | +L = [(I : S[1] → ∂S[1]) 0 0 0 0 0 0 0 0 0 0 0; |
| 188 | + 0 0 0 (I : S[2] → ∂S[2]) 0 0 0 0 0 0 0 0; |
| 189 | + 0 0 0 0 0 0 (I : S[3] → ∂S[3]) 0 0 0 0 0; |
| 190 | + 0 0 0 0 0 0 (I : S[3] → ∂S[4]) 0 0 0 0 0; |
| 191 | + 0 0 0 0 0 0 0 0 0 (I : S[4] → ∂S[5]) 0 0; |
| 192 | + 0 0 0 0 0 0 0 0 0 (I : S[4] → ∂S[6]) 0 0; |
| 193 | + (I : S[1] → ∂S12) 0 0 -(I : S[2] → ∂S12) 0 0 0 0 0 0 0 0; |
| 194 | + 0 (I : S[1] → ∂S12) (I : S[1] → ∂S12) 0 -(I : S[2] → ∂S12) -(I : S[2] → ∂S12) 0 0 0 0 0 0; |
| 195 | + 0 0 0 (I : S[2] → ∂S23) 0 0 -(I : S[3] → ∂S23) 0 0 0 0 0; |
| 196 | + 0 0 0 0 0 (I : S[2] → ∂S23) 0 0 -(I : S[3] → ∂S23) 0 0 0; |
| 197 | + (I : S[1] → ∂S14) 0 0 0 0 0 0 0 0 -(I : S[4] → ∂S14) 0 0; |
| 198 | + 0 (I : S[1] → ∂S14) 0 0 0 0 0 0 0 0 -(I : S[4] → ∂S14) 0; |
| 199 | + Dx -I 0 0 0 0 0 0 0 0 0 0; |
| 200 | + Dy 0 -I 0 0 0 0 0 0 0 0 0; |
| 201 | + 0 0 0 Dx -I 0 0 0 0 0 0 0; |
| 202 | + 0 0 0 Dy 0 -I 0 0 0 0 0 0; |
| 203 | + 0 0 0 0 0 0 (Dx : S[3]) -(I : S[3]) 0 0 0 0; |
| 204 | + 0 0 0 0 0 0 Dy 0 -I 0 0 0; |
| 205 | + 0 0 0 0 0 0 0 0 0 Dx -I 0; |
| 206 | + 0 0 0 0 0 0 0 0 0 (Dy : S[4]) 0 -(I : S[4]) |
| 207 | + k^2*I Dx Dy 0 0 0 0 0 0 0 0 0; |
| 208 | + 0 0 0 k^2*I Dx Dy 0 0 0 0 0 0; |
| 209 | + 0 0 0 0 0 0 k^2*I Dx Dy 0 0 0; |
| 210 | + 0 0 0 0 0 0 0 0 0 k^2*I Dx Dy |
| 211 | + ] |
| 212 | + |
| 213 | + |
| 214 | +f = ones(∂d) |
| 215 | + |
| 216 | +N = 101 |
| 217 | +@time M = sparse(L[Block.(1:N), Block.(1:N)]); |
| 218 | +@time F = qr(M); |
| 219 | +@time u_c = F \ pad(coefficients(vcat(components(f)..., Zeros(18)...), rangespace(L)), size(M,1)); |
| 220 | +u = Fun(domainspace(L), u_c) |
0 commit comments