|
| 1 | +# This file calculates the surface gradient of a scalar field. |
| 2 | + |
| 3 | +function gradient!(U::Matrix{T}, ∇θU::Matrix{T}, ∇φU::Matrix{T}) where T |
| 4 | + @assert size(U) == size(∇θU) == size(∇φU) |
| 5 | + N, M = size(U) |
| 6 | + |
| 7 | + # The first column is easy. |
| 8 | + @inbounds @simd for ℓ = 1:N-1 |
| 9 | + ∇θU[ℓ, 1] = -sqrt(T(ℓ*(ℓ+1)))*U[ℓ+1, 1] |
| 10 | + ∇φU[ℓ, 1] = 0 |
| 11 | + end |
| 12 | + ∇θU[N, 1] = 0 |
| 13 | + ∇φU[N, 1] = 0 |
| 14 | + |
| 15 | + # Next, we differentiate with respect to φ, which preserves the order. It swaps sines and cosines in longitude, though. |
| 16 | + @inbounds for m = 1:M÷2 |
| 17 | + @simd for ℓ = 1:N+1-m |
| 18 | + ∇φU[ℓ, 2m] = -m*U[ℓ, 2m+1] |
| 19 | + ∇φU[ℓ, 2m+1] = m*U[ℓ, 2m] |
| 20 | + end |
| 21 | + end |
| 22 | + |
| 23 | + # Then, we differentiate with respect to θ, which preserves the order but divides by sin(θ). |
| 24 | + |
| 25 | + @inbounds for m = 1:M÷2 |
| 26 | + ℓ = 1 |
| 27 | + bℓ = -(ℓ+m+1)*sqrt(T(ℓ*(ℓ+2m))/T((2ℓ+2m-1)*(2ℓ+2m+1))) |
| 28 | + ∇θU[ℓ, 2m] = bℓ*U[ℓ+1, 2m] |
| 29 | + ∇θU[ℓ, 2m+1] = bℓ*U[ℓ+1, 2m+1] |
| 30 | + @simd for ℓ = 2:N-m |
| 31 | + aℓ = (ℓ+m-2)*sqrt(T((ℓ-1)*(ℓ+2m-1))/T((2ℓ+2m-3)*(2ℓ+2m-1))) |
| 32 | + bℓ = -(ℓ+m+1)*sqrt(T(ℓ*(ℓ+2m))/T((2ℓ+2m-1)*(2ℓ+2m+1))) |
| 33 | + ∇θU[ℓ, 2m] = aℓ*U[ℓ-1, 2m] + bℓ*U[ℓ+1, 2m] |
| 34 | + ∇θU[ℓ, 2m+1] = aℓ*U[ℓ-1, 2m+1] + bℓ*U[ℓ+1, 2m+1] |
| 35 | + end |
| 36 | + ℓ = N-m+1 |
| 37 | + aℓ = (ℓ+m-2)*sqrt(T((ℓ-1)*(ℓ+2m-1))/T((2ℓ+2m-3)*(2ℓ+2m-1))) |
| 38 | + ∇θU[ℓ, 2m] = aℓ*U[ℓ-1, 2m] |
| 39 | + ∇θU[ℓ, 2m+1] = aℓ*U[ℓ-1, 2m+1] |
| 40 | + end |
| 41 | + |
| 42 | + # Finally, we divide by sin(θ), which can be done by decrementing the order P_ℓ^m ↘ P_ℓ^{m-1}. |
| 43 | + @inbounds for m = 1:M÷2 |
| 44 | + ℓ = N+1-m |
| 45 | + aℓ = sqrt(T((ℓ+2m-2)*(ℓ+2m-1))/T((2ℓ+2m-3)*(2ℓ+2m-1))) |
| 46 | + ∇θU[ℓ, 2m] = ∇θU[ℓ, 2m]/aℓ |
| 47 | + ∇θU[ℓ, 2m+1] = ∇θU[ℓ, 2m+1]/aℓ |
| 48 | + ∇φU[ℓ, 2m] = ∇φU[ℓ, 2m]/aℓ |
| 49 | + ∇φU[ℓ, 2m+1] = ∇φU[ℓ, 2m+1]/aℓ |
| 50 | + ℓ = N+1-m-1 |
| 51 | + if ℓ > 0 |
| 52 | + aℓ = sqrt(T((ℓ+2m-2)*(ℓ+2m-1))/T((2ℓ+2m-3)*(2ℓ+2m-1))) |
| 53 | + ∇θU[ℓ, 2m] = ∇θU[ℓ, 2m]/aℓ |
| 54 | + ∇θU[ℓ, 2m+1] = ∇θU[ℓ, 2m+1]/aℓ |
| 55 | + ∇φU[ℓ, 2m] = ∇φU[ℓ, 2m]/aℓ |
| 56 | + ∇φU[ℓ, 2m+1] = ∇φU[ℓ, 2m+1]/aℓ |
| 57 | + end |
| 58 | + @simd for ℓ = N+1-m-2:-1:1 |
| 59 | + aℓ = sqrt(T((ℓ+2m-2)*(ℓ+2m-1))/T((2ℓ+2m-3)*(2ℓ+2m-1))) |
| 60 | + bℓ = -sqrt(T(ℓ*(ℓ+1))/T((2ℓ+2m-1)*(2ℓ+2m+1))) |
| 61 | + ∇θU[ℓ, 2m] = (∇θU[ℓ, 2m] - bℓ*∇θU[ℓ+2, 2m])/aℓ |
| 62 | + ∇θU[ℓ, 2m+1] = (∇θU[ℓ, 2m+1] - bℓ*∇θU[ℓ+2, 2m+1])/aℓ |
| 63 | + ∇φU[ℓ, 2m] = (∇φU[ℓ, 2m] - bℓ*∇φU[ℓ+2, 2m])/aℓ |
| 64 | + ∇φU[ℓ, 2m+1] = (∇φU[ℓ, 2m+1] - bℓ*∇φU[ℓ+2, 2m+1])/aℓ |
| 65 | + end |
| 66 | + end |
| 67 | + |
| 68 | + ∇θU |
| 69 | +end |
| 70 | + |
| 71 | +function curl!(U::Matrix, U1::Matrix, U2::Matrix) |
| 72 | + gradient!(U, U2, U1) |
| 73 | + N, M = size(U) |
| 74 | + @inbounds for j = 1:M |
| 75 | + for i = 1:N |
| 76 | + U1[i,j] = -U1[i,j] |
| 77 | + end |
| 78 | + end |
| 79 | + U1 |
| 80 | +end |
| 81 | + |
| 82 | + |
| 83 | +function partial_gradient!(U::Matrix{T}, ∇θU::Matrix{T}, ∇φU::Matrix{T}) where T |
| 84 | + @assert size(U) == size(∇θU) == size(∇φU) |
| 85 | + N, M = size(U) |
| 86 | + |
| 87 | + # The first column is easy. |
| 88 | + @inbounds @simd for ℓ = 1:N-1 |
| 89 | + ∇θU[ℓ, 1] = -sqrt(T(ℓ*(ℓ+1)))*U[ℓ+1, 1] |
| 90 | + ∇φU[ℓ, 1] = 0 |
| 91 | + end |
| 92 | + ∇θU[N, 1] = 0 |
| 93 | + ∇φU[N, 1] = 0 |
| 94 | + |
| 95 | + # Next, we differentiate with respect to φ, which preserves the order. It swaps sines and cosines in longitude, though. |
| 96 | + @inbounds for m = 1:M÷2 |
| 97 | + @simd for ℓ = 1:N+1-m |
| 98 | + ∇φU[ℓ, 2m] = -m*U[ℓ, 2m+1] |
| 99 | + ∇φU[ℓ, 2m+1] = m*U[ℓ, 2m] |
| 100 | + end |
| 101 | + end |
| 102 | + |
| 103 | + # Then, we differentiate with respect to θ, which preserves the order but divides by sin(θ). |
| 104 | + |
| 105 | + @inbounds for m = 1:M÷2 |
| 106 | + ℓ = 1 |
| 107 | + bℓ = -(ℓ+m+1)*sqrt(T(ℓ*(ℓ+2m))/T((2ℓ+2m-1)*(2ℓ+2m+1))) |
| 108 | + ∇θU[ℓ, 2m] = bℓ*U[ℓ+1, 2m] |
| 109 | + ∇θU[ℓ, 2m+1] = bℓ*U[ℓ+1, 2m+1] |
| 110 | + @simd for ℓ = 2:N-m |
| 111 | + aℓ = (ℓ+m-2)*sqrt(T((ℓ-1)*(ℓ+2m-1))/T((2ℓ+2m-3)*(2ℓ+2m-1))) |
| 112 | + bℓ = -(ℓ+m+1)*sqrt(T(ℓ*(ℓ+2m))/T((2ℓ+2m-1)*(2ℓ+2m+1))) |
| 113 | + ∇θU[ℓ, 2m] = aℓ*U[ℓ-1, 2m] + bℓ*U[ℓ+1, 2m] |
| 114 | + ∇θU[ℓ, 2m+1] = aℓ*U[ℓ-1, 2m+1] + bℓ*U[ℓ+1, 2m+1] |
| 115 | + end |
| 116 | + ℓ = N-m+1 |
| 117 | + aℓ = (ℓ+m-2)*sqrt(T((ℓ-1)*(ℓ+2m-1))/T((2ℓ+2m-3)*(2ℓ+2m-1))) |
| 118 | + ∇θU[ℓ, 2m] = aℓ*U[ℓ-1, 2m] |
| 119 | + ∇θU[ℓ, 2m+1] = aℓ*U[ℓ-1, 2m+1] |
| 120 | + end |
| 121 | + |
| 122 | + ∇θU |
| 123 | +end |
0 commit comments