@@ -74,10 +74,10 @@ function rec_rhs_1!(F::AbstractMatrix{T}, z) where T
74
74
πT = convert (T, π)
75
75
if x < - 1 && - 1 < y < 1
76
76
C_y = Ultraspherical {T} (- 1 / 2 )[y,2 : n+ 1 ]
77
- F[1 ,:] .- = (4im * πT * x) .* C_y
77
+ F[1 ,:] .= (- 4im * πT * x) .* C_y
78
78
elseif x < 1 && - 1 < y < 1
79
79
C_y = Ultraspherical {T} (- 1 / 2 )[y,2 : n+ 1 ]
80
- F[1 ,:] .- = (2im * πT * (x- 1 )) .* C_y
80
+ F[1 ,:] .= (- 2im * πT * (x- 1 )) .* C_y
81
81
end
82
82
83
83
F[1 ,1 ] += zlog (z- 1 - im) + zlogm (z- 1 + im) + zlog (z+ 1 - im) + zlogm (z+ 1 + im)
@@ -103,16 +103,16 @@ function rec_rhs_2!(F::AbstractMatrix{T}, z) where T
103
103
if - 1 < x < 1 && - 1 ≤ y < 1
104
104
C_x = Ultraspherical {T} (- 3 / 2 )[x,3 : m+ 2 ]
105
105
C_y = Ultraspherical {T} (- 1 / 2 )[y,2 : n+ 1 ]
106
- F = (2im * πT) .* (C_x .* C_y' ) ./ 3
106
+ F . = (2im * πT) .* (C_x .* C_y' ) ./ 3
107
107
F[1 ,:] .- = (2im * πT) .* x .* C_y
108
108
F[2 ,:] .+ = (2im * πT/ 3 ) .* C_y
109
109
elseif x ≤ - 1 && - 1 ≤ y < 1
110
- F = zeros (T,m,n )
110
+ fill! (F, zero (T) )
111
111
C_y = Ultraspherical {T} (- 1 / 2 )[y,2 : n+ 1 ]
112
112
F[1 ,:] .= (- 4im * πT) .* x .* C_y
113
113
F[2 ,:] .= (4im * πT/ 3 ) .* C_y
114
114
else
115
- F = zeros (T,m,n )
115
+ fill! (F, zero (T) )
116
116
end
117
117
118
118
L₋ = complexlogkernel (Legendre {T} (), z- im)[1 : m+ 1 ]
@@ -167,8 +167,8 @@ function logkernelsquare!(A::AbstractMatrix{T}, z, F_1, F_2) where T
167
167
logkernelsquare_populatefirstcolumn! (A, z, F_1, F_2)
168
168
logkernelsquare_populatefirstrow! (A, z, F_1, F_2)
169
169
170
- F = F_1 # reuse the memory
171
- F . = F_2 .- F_1
170
+ # F = F_1 # reuse the memory
171
+ F = F_2 .- F_1
172
172
173
173
# 2nd row/column
174
174
0 commit comments