|
| 1 | +# Infinite Arrays implementation from |
| 2 | +# https://github.com/JuliaLang/julia/blob/master/test/testhelpers/InfiniteArrays.jl |
| 3 | +module InfiniteArrays |
| 4 | + export OneToInf, Infinity |
| 5 | + |
| 6 | + """ |
| 7 | + Infinity() |
| 8 | + Represents infinite cardinality. Note that `Infinity <: Integer` to support |
| 9 | + being treated as an index. |
| 10 | + """ |
| 11 | + struct Infinity <: Integer end |
| 12 | + |
| 13 | + Base.:(==)(::Infinity, ::Int) = false |
| 14 | + Base.:(==)(::Int, ::Infinity) = false |
| 15 | + Base.:(<)(::Int, ::Infinity) = true |
| 16 | + Base.:(<)(::Infinity, ::Int) = false |
| 17 | + Base.:(≤)(::Int, ::Infinity) = true |
| 18 | + Base.:(≤)(::Infinity, ::Int) = false |
| 19 | + Base.:(≤)(::Infinity, ::Infinity) = true |
| 20 | + Base.:(-)(::Infinity, ::Int) = Infinity() |
| 21 | + Base.:(+)(::Infinity, ::Int) = Infinity() |
| 22 | + Base.:(:)(::Infinity, ::Infinity) = 1:0 |
| 23 | + |
| 24 | + Base.:(+)(::Integer, ::Infinity) = Infinity() |
| 25 | + Base.:(+)(::Infinity, ::Integer) = Infinity() |
| 26 | + Base.:(*)(::Integer, ::Infinity) = Infinity() |
| 27 | + Base.:(*)(::Infinity, ::Integer) = Infinity() |
| 28 | + |
| 29 | + Base.isinf(::Infinity) = true |
| 30 | + |
| 31 | + abstract type AbstractInfUnitRange{T<:Real} <: AbstractUnitRange{T} end |
| 32 | + Base.length(r::AbstractInfUnitRange) = Infinity() |
| 33 | + Base.size(r::AbstractInfUnitRange) = (Infinity(),) |
| 34 | + Base.unitrange(r::AbstractInfUnitRange) = InfUnitRange(r) |
| 35 | + Base.last(r::AbstractInfUnitRange) = Infinity() |
| 36 | + Base.axes(r::AbstractInfUnitRange) = (OneToInf(),) |
| 37 | + |
| 38 | + """ |
| 39 | + OneToInf(n) |
| 40 | + Define an `AbstractInfUnitRange` that behaves like `1:∞`, with the added |
| 41 | + distinction that the limits are guaranteed (by the type system) to |
| 42 | + be 1 and ∞. |
| 43 | + """ |
| 44 | + struct OneToInf{T<:Integer} <: AbstractInfUnitRange{T} end |
| 45 | + |
| 46 | + OneToInf() = OneToInf{Int}() |
| 47 | + |
| 48 | + Base.axes(r::OneToInf) = (r,) |
| 49 | + Base.first(r::OneToInf{T}) where {T} = oneunit(T) |
| 50 | + Base.oneto(::Infinity) = OneToInf() |
| 51 | + |
| 52 | + struct InfUnitRange{T<:Real} <: AbstractInfUnitRange{T} |
| 53 | + start::T |
| 54 | + end |
| 55 | + Base.first(r::InfUnitRange) = r.start |
| 56 | + InfUnitRange(a::InfUnitRange) = a |
| 57 | + InfUnitRange{T}(a::AbstractInfUnitRange) where T<:Real = InfUnitRange{T}(first(a)) |
| 58 | + InfUnitRange(a::AbstractInfUnitRange{T}) where T<:Real = InfUnitRange{T}(first(a)) |
| 59 | + unitrange(a::AbstractInfUnitRange) = InfUnitRange(a) |
| 60 | + Base.:(:)(start::T, stop::Infinity) where {T<:Integer} = InfUnitRange{T}(start) |
| 61 | + function getindex(v::InfUnitRange{T}, i::Integer) where T |
| 62 | + @boundscheck i > 0 || Base.throw_boundserror(v, i) |
| 63 | + convert(T, first(v) + i - 1) |
| 64 | + end |
| 65 | +end |
0 commit comments