@@ -1194,9 +1194,9 @@ Compute vectors if `model` is a [`NonLinModel`](@ref) and other [`TranscriptionM
11941194The method mutates `Ŷ0` and `x̂0end` arguments. The augmented output function [`ĥ!`](@ref)
11951195is called multiple times in a `for` loop:
11961196```math
1197- \m athbf{ŷ_0}(k) = \m athbf{ĥ}\B ig(\m athbf{x̂_0^† }(k+j ), \m athbf{d_0}(k) \B ig)
1197+ \m athbf{ŷ_0}(k) = \m athbf{ĥ}\B ig(\m athbf{x̂_0}(k), \m athbf{d_0}(k) \B ig)
11981198```
1199- in which ``\m athbf{x̂_0^† }`` is the augmented state extracted from the decision variable `Z̃`.
1199+ in which ``\m athbf{x̂_0}`` is the augmented state extracted from the decision variable `Z̃`.
12001200"""
12011201function predict! (
12021202 Ŷ0, x̂0end, _, _, _,
@@ -1316,10 +1316,10 @@ The method mutates the `geq`, `X̂0`, `Û0` and `K0` vectors in argument. The n
13161316equality constraints `geq` only includes the augmented state defects, computed with:
13171317```math
13181318\m athbf{ŝ}(k+1) = \m athbf{f̂}\B ig(\m athbf{x̂_0}(k), \m athbf{u_0}(k), \m athbf{d_0}(k)\B ig)
1319- - \m athbf{x̂_0^† }(k+1)
1319+ - \m athbf{x̂_0}(k+1)
13201320```
1321- in which ``\m athbf{x̂_0^† }`` is the augmented state extracted from the decision variables
1322- `Z̃`, and ``\m athbf{f̂}``, the augmented state function defined in [`f̂!`](@ref).
1321+ in which the augmented state ``\m athbf{x̂_0}`` are extracted from the decision variables
1322+ `Z̃`, and ``\m athbf{f̂}`` is the augmented state function defined in [`f̂!`](@ref).
13231323"""
13241324function con_nonlinprogeq! (
13251325 geq, X̂0, Û0, K0,
@@ -1366,18 +1366,18 @@ time state-space models, and the stochastic model of the unmeasured disturbances
13661366is discrete-time. The deterministic and stochastic defects are respectively computed with:
13671367```math
13681368\b egin{aligned}
1369- \m athbf{s_d}(k+1) &= \m athbf{x_0}(k) - \m athbf{x_0^† }(k+1)
1369+ \m athbf{s_d}(k+1) &= \m athbf{x_0}(k) - \m athbf{x_0}(k+1)
13701370 + 0.5 T_s (\m athbf{k}_1 + \m athbf{k}_2) \\
1371- \m athbf{s_s}(k+1) &= \m athbf{A_s x_s}(k) - \m athbf{x_s^† }(k+1)
1371+ \m athbf{s_s}(k+1) &= \m athbf{A_s x_s}(k) - \m athbf{x_s}(k+1)
13721372\e nd{aligned}
13731373```
1374- in which ``\m athbf{x_0^† }`` and ``\m athbf{x_s^† }`` are the deterministic and stochastic
1375- states extracted from the decision variables `Z̃`. The ``\m athbf{k}`` coefficients are
1374+ in which ``\m athbf{x_0}`` and ``\m athbf{x_s}`` are the deterministic and stochastic states
1375+ extracted from the decision variables `Z̃`. The ``\m athbf{k}`` coefficients are
13761376evaluated from the continuous-time function `model.f!` and:
13771377```math
13781378\b egin{aligned}
1379- \m athbf{k}_1 &= \m athbf{f}\B ig(\m athbf{x_0}(k), \m athbf{û_0}(k), \m athbf{d_0}(k) \B ig) \\
1380- \m athbf{k}_2 &= \m athbf{f}\B ig(\m athbf{x_0^† }(k+1), \m athbf{û_0}(k), \m athbf{d_0}(k+1)\B ig)
1379+ \m athbf{k}_1 &= \m athbf{f}\B ig(\m athbf{x_0}(k), \m athbf{û_0}(k), \m athbf{d_0}(k) \B ig) \\
1380+ \m athbf{k}_2 &= \m athbf{f}\B ig(\m athbf{x_0}(k+1), \m athbf{û_0}(k), \m athbf{d_0}(k+1)\B ig)
13811381\e nd{aligned}
13821382```
13831383and the input of the augmented model is:
0 commit comments