@@ -101,7 +101,7 @@ on the covariance tuning. The matrices ``\mathbf{Ĉ^m, D̂_d^m}`` are the rows
101101``\m athbf{Ĉ, D̂_d}`` that correspond to measured outputs ``\m athbf{y^m}`` (and unmeasured
102102ones, for ``\m athbf{Ĉ^u, D̂_d^u}``). The Kalman filter will estimate the current state with
103103the newest measurements ``\m athbf{x̂}_k(k)`` if `direct` is `true`, else it will predict the
104- state of the next time step ``\m athbf{x̂}_k(k+1)``.
104+ state of the next time step ``\m athbf{x̂}_k(k+1)``. This estimator is allocation-free.
105105
106106# Arguments
107107!!! info
@@ -352,6 +352,7 @@ the estimation error covariance of `model` states augmented with the stochastic
352352``\m athbf{P̂}_{-1}(0) = \m athrm{diag}\{ \m athbf{P}(0), \m athbf{P_{int_{u}}}(0),
353353\m athbf{P_{int_{ym}}}(0) \} ``. The initial state estimate ``\m athbf{x̂}_{-1}(0)`` can be
354354manually specified with [`setstate!`](@ref), or automatically with [`initstate!`](@ref).
355+ This estimator is allocation-free.
355356
356357# Arguments
357358!!! info
@@ -596,6 +597,7 @@ matrix ``\mathbf{P̂}`` is the estimation error covariance of `model` state augm
596597stochastic ones. Three keyword arguments specify its initial value with ``\m athbf{P̂}_{-1}(0) =
597598\m athrm{diag}\{ \m athbf{P}(0), \m athbf{P_{int_{u}}}(0), \m athbf{P_{int_{ym}}}(0) \} ``. The
598599initial state estimate ``\m athbf{x̂}_{-1}(0)`` can be manually specified with [`setstate!`](@ref).
600+ This estimator is allocation-free if `model` simulations do not allocate.
599601
600602# Arguments
601603!!! info
@@ -950,7 +952,7 @@ Both [`LinModel`](@ref) and [`NonLinModel`](@ref) are supported. The process mod
950952keyword arguments are identical to [`UnscentedKalmanFilter`](@ref), except for `α`, `β` and
951953`κ` which do not apply to the extended Kalman Filter. The Jacobians of the augmented model
952954``\m athbf{f̂, ĥ}`` are computed with [`ForwardDiff.jl`](https://github.com/JuliaDiff/ForwardDiff.jl)
953- automatic differentiation.
955+ automatic differentiation. This estimator allocates memory for the Jacobians.
954956
955957!!! warning
956958 See the Extended Help of [`linearize`](@ref) function if you get an error like:
0 commit comments