@@ -35,34 +35,34 @@ julia> linmodel.A
3535 With the nonlinear state-space model:
3636 ```math
3737 \b egin{aligned}
38- \m athbf{x}(k+1) &= \m athbf{f}\B ig(\m athbf{x}(k), \m athbf{u}(k), \m athbf{d}(k)\B ig) \\
39- \m athbf{y}(k) &= \m athbf{h}\B ig(\m athbf{x}(k), \m athbf{d}(k)\B ig)
38+ \m athbf{x}(k+1) &= \m athbf{f}\B ig(\m athbf{x}(k), \m athbf{u}(k), \m athbf{d}(k), \m athbf{p} \B ig) \\
39+ \m athbf{y}(k) &= \m athbf{h}\B ig(\m athbf{x}(k), \m athbf{d}(k), \m athbf{p} \B ig)
4040 \e nd{aligned}
4141 ```
4242 its linearization at the operating point ``\m athbf{x_{op}, u_{op}, d_{op}}`` is:
4343 ```math
4444 \b egin{aligned}
4545 \m athbf{x_0}(k+1) &≈ \m athbf{A x_0}(k) + \m athbf{B_u u_0}(k) + \m athbf{B_d d_0}(k)
46- + \m athbf{f(x_{op}, u_{op}, d_{op})} - \m athbf{x_{op}} \\
46+ + \m athbf{f(x_{op}, u_{op}, d_{op}, p )} - \m athbf{x_{op}} \\
4747 \m athbf{y_0}(k) &≈ \m athbf{C x_0}(k) + \m athbf{D_d d_0}(k)
4848 \e nd{aligned}
4949 ```
5050 based on the deviation vectors ``\m athbf{x_0, u_0, d_0, y_0}`` introduced in [`setop!`](@ref)
5151 documentation, and the Jacobian matrices:
5252 ```math
5353 \b egin{aligned}
54- \m athbf{A} &= \l eft. \f rac{∂\m athbf{f(x, u, d)}}{∂\m athbf{x}} \r ight|_{\m athbf{x=x_{op},\, u=u_{op},\, d=d_{op}}} \\
55- \m athbf{B_u} &= \l eft. \f rac{∂\m athbf{f(x, u, d)}}{∂\m athbf{u}} \r ight|_{\m athbf{x=x_{op},\, u=u_{op},\, d=d_{op}}} \\
56- \m athbf{B_d} &= \l eft. \f rac{∂\m athbf{f(x, u, d)}}{∂\m athbf{d}} \r ight|_{\m athbf{x=x_{op},\, u=u_{op},\, d=d_{op}}} \\
57- \m athbf{C} &= \l eft. \f rac{∂\m athbf{h(x, d)}}{∂\m athbf{x}} \r ight|_{\m athbf{x=x_{op},\, d=d_{op}}} \\
58- \m athbf{D_d} &= \l eft. \f rac{∂\m athbf{h(x, d)}}{∂\m athbf{d}} \r ight|_{\m athbf{x=x_{op},\, d=d_{op}}}
54+ \m athbf{A} &= \l eft. \f rac{∂\m athbf{f(x, u, d, p )}}{∂\m athbf{x}} \r ight|_{\m athbf{x=x_{op},\, u=u_{op},\, d=d_{op}}} \\
55+ \m athbf{B_u} &= \l eft. \f rac{∂\m athbf{f(x, u, d, p )}}{∂\m athbf{u}} \r ight|_{\m athbf{x=x_{op},\, u=u_{op},\, d=d_{op}}} \\
56+ \m athbf{B_d} &= \l eft. \f rac{∂\m athbf{f(x, u, d, p )}}{∂\m athbf{d}} \r ight|_{\m athbf{x=x_{op},\, u=u_{op},\, d=d_{op}}} \\
57+ \m athbf{C} &= \l eft. \f rac{∂\m athbf{h(x, d, p )}}{∂\m athbf{x}} \r ight|_{\m athbf{x=x_{op},\, d=d_{op}}} \\
58+ \m athbf{D_d} &= \l eft. \f rac{∂\m athbf{h(x, d, p )}}{∂\m athbf{d}} \r ight|_{\m athbf{x=x_{op},\, d=d_{op}}}
5959 \e nd{aligned}
6060 ```
6161 Following [`setop!`](@ref) notation, we find:
6262 ```math
6363 \b egin{aligned}
64- \m athbf{f_{op}} &= \m athbf{f(x_{op}, u_{op}, d_{op})} \\
65- \m athbf{y_{op}} &= \m athbf{h(x_{op}, d_{op})}
64+ \m athbf{f_{op}} &= \m athbf{f(x_{op}, u_{op}, d_{op}, p )} \\
65+ \m athbf{y_{op}} &= \m athbf{h(x_{op}, d_{op}, p )}
6666 \e nd{aligned}
6767 ```
6868 Notice that ``\m athbf{f_{op} - x_{op} = 0}`` if the point is an equilibrium. The
0 commit comments